High-Frequency Radar Ocean Current Mapping at Rapid Scale with Autoregressive Modeling

Autor: Julien Marmain, Charles-Antoine Guérin, Baptiste Domps, Dylan Dumas
Přispěvatelé: Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Time delay and integration
Signal Processing (eess.SP)
Scale (ratio)
FOS: Physical sciences
020101 civil engineering
Ocean Engineering
02 engineering and technology
01 natural sciences
010305 fluids & plasmas
0201 civil engineering
law.invention
symbols.namesake
law
Hfr cell
0103 physical sciences
FOS: Electrical engineering
electronic engineering
information engineering

14. Life underwater
Electrical and Electronic Engineering
Radar
Time series
Electrical Engineering and Systems Science - Signal Processing
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment

Physics
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere

Mechanical Engineering
Time–frequency analysis
Computational physics
Physics - Atmospheric and Oceanic Physics
Autoregressive model
Atmospheric and Oceanic Physics (physics.ao-ph)
symbols
Doppler effect
Zdroj: IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering, Institute of Electrical and Electronics Engineers, 2021, ⟨10.1109/JOE.2020.3048507⟩
IEEE Journal of Oceanic Engineering, 2021, ⟨10.1109/JOE.2020.3048507⟩
ISSN: 0364-9059
DOI: 10.48550/arxiv.2006.11001
Popis: We use an Autoregressive (AR) approach combined with a Maximum Entropy Method (MEM) to estimate radial surface currents from coastal High-Frequency Radar (HFR) complex voltage time series. The performances of this combined AR-MEM model are investigated with synthetic HFR data and compared with the classical Doppler spectrum approach. It is shown that AR-MEM drastically improves the quality and the rate of success of the surface current estimation for short integration time. To confirm these numerical results, the same analysis is conducted with an experimental data set acquired with a 16.3 MHz HFR in Toulon. It is found that the AR-MEM technique is able to provide high-quality and high-coverage maps of surface currents even with very short integration time (about 1 minute) where the classical spectral approach can only fulfill the quality tests on a sparse coverage. Further useful application of the technique is found in the tracking of surface current at high-temporal resolution. Rapid variations of the surface current at the time scale of the minute are unveiled and shown consistent with a $f^{-5/3}$ decay of turbulent spectra.
Comment: 13 pages, 11 figures, 3 tables
Databáze: OpenAIRE