On the global flow of a 3--dimensional Lotka--Volterra system
Autor: | Víctor Castellanos, Justino Alavez-Ramírez, Jaume Llibre, Gamaliel Blé |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona |
Popis: | Agraïments: The first author is partially supported by the grant PROMEP/103.5/08/3189. The first three authors are partially supported by two CONACYT grants with numbers 58968 and 62613. In the study of the black holes with Higgs field appears in a natural way the Lotka-Volterra differential system x˙= x(y − 1), y˙= y(1 + y − 2x2 − z2), z˙= zy, in R3. Here we provide the qualitative analysis of the flow of this system describing the α-limit set and the ω-limit set of all orbits of this system in the whole Poincar'e ball, i.e. we identify R3 with the interior of the unit ball of R3 centered at the origin and we extend analytically this flow to its boundary, i.e. to the infinity. |
Databáze: | OpenAIRE |
Externí odkaz: |