Jordan Isomorphisms of Finitary Incidence Algebras
Autor: | Rosali Brusamarello, Érica Z. Fornaroli, Mykola Khrypchenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Pure mathematics Algebra homomorphism Ring (mathematics) Algebra and Number Theory 010102 general mathematics 010103 numerical & computational mathematics Mathematics - Rings and Algebras 01 natural sciences Primary 16S50 17C50 Secondary 16W10 Rings and Algebras (math.RA) Incidence algebra FOS: Mathematics Finitary Homomorphism Isomorphism 0101 mathematics Partially ordered set Incidence (geometry) Mathematics |
Popis: | Let $X$ be a partially ordered set, $R$ a commutative $2$-torsionfree unital ring and $FI(X,R)$ the finitary incidence algebra of $X$ over $R$. In this note we prove that each $R$-linear Jordan isomorphism of $FI(X,R)$ onto an $R$-algebra $A$ is the near-sum of a homomorphism and an anti-homomorphism. Revised |
Databáze: | OpenAIRE |
Externí odkaz: |