Metadata-Driven Universal Real-Time Ocean Sound Measurement Architecture

Autor: Albert Garcia-Benadí, Joaquin Del-Rio, Spartacus Gomáriz, Enoc Martinez, Eric Delory, Daniel Mihai Toma
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica, Centre Tecnològic de Vilanova i la Geltrú, Universitat Politècnica de Catalunya. Centre de Desenvolupament Tecnològic de Sistemes d'Adquisició Remota i Tractament de la Informació, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. SARTI-MAR - Sistemes d'Adquisició Remota de dades i Tractament de la Informació en el Medi Marí
Jazyk: angličtina
Rok vydání: 2021
Předmět:
0106 biological sciences
Sensor networks
General Computer Science
Computer science
data acquisition
interoperability
01 natural sciences
Fons marins -- Investigació
Xarxes de sensors
Marine Strategy Framework Directive
Underwater acoustics
General Materials Science
14. Life underwater
Underwater
Real-time systems
Sound (geography)
0105 earth and related environmental sciences
Acústica submarina
geography
geography.geographical_feature_category
Noise measurement
Hydrophone
010505 oceanography
010604 marine biology & hydrobiology
General Engineering
ENVRI-FAIR
Data acquisition
sensor web enablement
Interoperability
Sensor web enablement
Metadata
underwater acoustics
real-time systems
13. Climate action
Systems engineering
Ocean sound
Enginyeria electrònica::Instrumentació i mesura [Àrees temàtiques de la UPC]
lcsh:Electrical engineering. Electronics. Nuclear engineering
lcsh:TK1-9971
Zdroj: IEEE Access, Vol 9, Pp 28282-28301 (2021)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 2169-3536
2017-8786
Popis: Underwater sound in the oceans has been significantly rising in the past decades due to an increase in human activities, adversely affecting the marine environment. In order to assess and limit the impact of underwater noise, the European Commission’s Marine Strategy Framework Directive (MSFD) included the long-term monitoring of low-frequency underwater sound as a relevant indicator to achieve a good environmental status. There is a wide range of commercial hydrophones and observing platforms able to perform such measurements. However, heterogeneity and lack of standardization in both hydrophones and observing platforms makes the integration and data management tasks time-consuming and error-prone. Moreover, their power and communications constraints need to be addressed to make them suitable for long-term ocean sound monitoring. Measured underwater sound levels are challenging to compare because different measurement methodologies are used, leading to a risk of misunderstandings and data misinterpretation. Furthermore, the exact methodology applied is not always public or accessible, significantly reducing ocean sound data re-usability. Within this work, a universal architecture for ocean sound measurement is presented, addressing hydrophone integration, real-time in situ processing and data management challenges. Emphasis is placed on generic and re-usable components, so it can be seamlessly replicated and deployed in new scenarios regardless of the underlying hardware and software constraints (hydrophone model, observing platform, operating system, etc.). Within the proposed architecture, a generic implementation of an underwater sound algorithm based on underwater noise measurement best practices is provided. Standardized and coherent metadata with emphasis on strong semantics is discussed, providing the building blocks for FAIR (Findable, Accessible, Interoperable, Reusable) ocean sound data management. This work has been funded by the Spanish government project RESBIO (grant agreement TEC2017-87861-R), the EU projects ENVRI-FAIR (grant agreement 824068), the JONAS INTERREG Atlantic Area-funded project (EAPA_52/2018), partly by the Generalitat de Catalunya SARTI-MAR project (grant agreement 2017 SGR 371) and partly by the FPI-UPC_2015 scholarship program.
Databáze: OpenAIRE