Characterization of (0–3) piezocomposite materials for transducer applications

Autor: O. A. Omoniyi, Richard O'Leary, M. L. Briuglia, M. J. Cardona, James F. C. Windmill, R. Mansour
Rok vydání: 2020
Předmět:
Zdroj: 2020 IEEE International Ultrasonics Symposium (IUS).
DOI: 10.1109/ius46767.2020.9251355
Popis: In this study, we have developed and characterized two different (0–3) piezoelectric composite materials with potential to be used in sensing applications. The composite materials were made using Polydimethylsiloxane (PDMS) as the polymer matrix with Barium Titanate (BaTiO3), and Lead Zirconate Titanate (PZT51) as the dielectric fillers. Thin film samples of the (0–3) piezocomposites were prepared using a solution mixing and spin coating method to produce composites with (0–3) connectivity pattern and layer thickness of $\mathbf{100}\ \mu\mathbf{m}$ , The microstructure of the piezocomposites were analyzed using a scanning electron microscope to determine the connectivity structure and homogeneity of the piezocomposites. The mechanical properties of the composites were determined using the method of Oliver and Pharr. FTIR analysis was used to determine the effects of the fillers on the structure of the piezocomposite. The average piezoelectric $\pmb{d}_{\mathit{33}}$ coefficient of the piezocomposites were also measured using the laser vibrometer technique and determined to be 30 pm/V for the piezocomposite consisting of Barium Titanate (BaTiO3) and 32 pm/V for the piezocomposite consisting of Lead Zirconate Titanate (PZT51).
Databáze: OpenAIRE