Analytic-non-integrability of an integrable analytic Hamiltonian system

Autor: Gaetano Zampieri, Gianluca Gorni
Rok vydání: 2005
Předmět:
Zdroj: Differential Geometry and its Applications. 22:287-296
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2005.01.004
Popis: We introduce the polynomial Hamiltonian H ( q 1 , q 2 , p 1 , p 2 ) : = ( q 2 2 + ( q 1 2 + q 2 2 ) 2 ) p 1 − q 1 q 2 p 2 and we prove that the associated Hamiltonian system is Liouville- C ∞ -integrable, but fails to be real-analytically integrable in any neighbourhood of an equilibrium point. The proof only uses power series expansions, and is elementary.
Databáze: OpenAIRE