Microscale magneto-elastic composite swimmers at the air-water and water-solid interfaces under a uniaxial field

Autor: Matthew T. Bryan, C.P. Winlove, Elizabeth L. Martin, Peter G. Petrov, Carles Calero, Pietro Tierno, Joshua K. Hamilton, Ignacio Pagonabarraga, Francesc Sagués, Jose Garcia-Torres, Feodor Y. Ogrin
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Universitat de Barcelona
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Physical Review Applied
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de la UB
Universidad de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Self-propulsion of magneto-elastic composite microswimmers is demonstrated under a uniaxial field at both the air-water and the water-substrate interfaces. The microswimmers are made of elastically linked magnetically hard Co-Ni-P and soft Co ferromagnets, fabricated using standard photolithography and electrodeposition. Swimming speed and direction are dependent on the field frequency and amplitude, reaching a maximum of 95.1 μm/s on the substrate surface. Fastest motion occurs at low frequencies via a spinning (air-water interface) or tumbling (water-substrate interface) mode that induces transient inertial motion. Higher frequencies result in low Reynolds number propagation at both interfaces via a rocking mode. Therefore, the same microswimmer can be operated as either a high or a low Reynolds number swimmer. Swimmer pairs agglomerate to form a faster superstructure that propels via spinning and rocking modes analogous to those seen in isolated swimmers. Microswimmer propulsion is driven by a combination of dipolar interactions between the Co and Co-Ni-P magnets and rotational torque due to the applied field, combined with elastic deformation and hydrodynamic interactions between different parts of the swimmer, in agreement with previous models.
Databáze: OpenAIRE