Microscale magneto-elastic composite swimmers at the air-water and water-solid interfaces under a uniaxial field
Autor: | Matthew T. Bryan, C.P. Winlove, Elizabeth L. Martin, Peter G. Petrov, Carles Calero, Pietro Tierno, Joshua K. Hamilton, Ignacio Pagonabarraga, Francesc Sagués, Jose Garcia-Torres, Feodor Y. Ogrin |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Universitat de Barcelona |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Photolithography
Field (physics) Física::Física de fluids [Àrees temàtiques de la UPC] Computer science Composite number Ferromagnetisme education Condensed matter General Physics and Astronomy Mechanical engineering 02 engineering and technology Magneto elastic 01 natural sciences Quantitative Biology::Other Quantitative Biology::Cell Behavior 0103 physical sciences Física aplicada 010306 general physics Fotolitografia Microscale chemistry Mixing (physics) Physics::Biological Physics Magnetisme Magnetism 021001 nanoscience & nanotechnology Matèria condensada Magnet Ferromagnetism Robot Air water 0210 nano-technology |
Zdroj: | Physical Review Applied Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de la UB Universidad de Barcelona UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Self-propulsion of magneto-elastic composite microswimmers is demonstrated under a uniaxial field at both the air-water and the water-substrate interfaces. The microswimmers are made of elastically linked magnetically hard Co-Ni-P and soft Co ferromagnets, fabricated using standard photolithography and electrodeposition. Swimming speed and direction are dependent on the field frequency and amplitude, reaching a maximum of 95.1 μm/s on the substrate surface. Fastest motion occurs at low frequencies via a spinning (air-water interface) or tumbling (water-substrate interface) mode that induces transient inertial motion. Higher frequencies result in low Reynolds number propagation at both interfaces via a rocking mode. Therefore, the same microswimmer can be operated as either a high or a low Reynolds number swimmer. Swimmer pairs agglomerate to form a faster superstructure that propels via spinning and rocking modes analogous to those seen in isolated swimmers. Microswimmer propulsion is driven by a combination of dipolar interactions between the Co and Co-Ni-P magnets and rotational torque due to the applied field, combined with elastic deformation and hydrodynamic interactions between different parts of the swimmer, in agreement with previous models. |
Databáze: | OpenAIRE |
Externí odkaz: |