Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus

Autor: Carine Alcon, Catherine Curie, Daniel Gargani, Beatriz Dáder, Jaclyn S Zhou, Jean-Luc Macia, Véronique Brault, James C. K. Ng, Myriam Burckbuchler, Martin Drucker
Přispěvatelé: Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Santé de la vigne et qualité du vin (SVQV), Université de Strasbourg (UNISTRA)-Institut National de la Recherche Agronomique (INRA), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Department of Microbiology and Plant Pathology, INRA SPE department, Agence Nationale de la Recherche : 12-BSV7-005-01, Human Frontier Science Program : RGP0013/2015, European Project: 609398,EC:FP7:PEOPLE,FP7-PEOPLE-2013-COFUND,AGREENSKILLSPLUS(2014), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg (UNISTRA), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0106 biological sciences
Leaves
Physiology
[SDV]Life Sciences [q-bio]
Arabidopsis
Plant Science
Plant Genetics
medicine.disease_cause
Biochemistry
Genetically Modified Plants
01 natural sciences
Green fluorescent protein
Fluorescence Microscopy
Caulimovirus
Viral factory
Plant Genomics
Medicine and Health Sciences
Arabidopsis thaliana
pathologie végétale
ComputingMilieux_MISCELLANEOUS
Microscopy
Viral Genomics
0303 health sciences
Microscopy
Confocal

Multidisciplinary
biology
Plant Anatomy
Genetically Modified Organisms
Microbiology and Parasitology
Eukaryota
Light Microscopy
food and beverages
Genomics
Plants
Plants
Genetically Modified

Microbiologie et Parasitologie
Body Fluids
Blood
Experimental Organism Systems
Engineering and Technology
Medicine
Anatomy
Genetic Engineering
Research Article
Biotechnology
Viral protein
Recombinant Fusion Proteins
Arabidopsis Thaliana
Science
Green Fluorescent Proteins
Mutagenesis (molecular biology technique)
Bioengineering
Context (language use)
Brassica
Microbial Genomics
Research and Analysis Methods
Green Fluorescent Protein
Microbiology
Virus
Viral Proteins
03 medical and health sciences
Model Organisms
Plant and Algal Models
Virology
Genetics
medicine
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
Plant Diseases
030304 developmental biology
fungi
Organisms
Biology and Life Sciences
Proteins
Blood Serum
biology.organism_classification
Plant Leaves
Luminescent Proteins
caulimovirus mosaïque du chou fleur
Mutagenesis
Site-Directed

Animal Studies
Plant Biotechnology
Cauliflower mosaic virus
Immune Serum
[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
010606 plant biology & botany
Zdroj: PLoS ONE
PLoS ONE, Public Library of Science, 2019, 14 (3), pp.e0213087. ⟨10.1371/journal.pone.0213087⟩
PLoS ONE, Vol 14, Iss 3, p e0213087 (2019)
PloS One
Plos One 3 (14), . (2019)
PLoS ONE, 2019, 14 (3), pp.e0213087. ⟨10.1371/journal.pone.0213087⟩
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0213087⟩
Popis: The split GFP technique is based on the auto-assembly of GFP when two polypeptides– GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non- fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells dis- played in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, present- ing a new application for the split GFP system in protein-p The split GFP technique is based on the auto-assembly of GFP when two polypeptides– GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non- fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells dis- played in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.
Databáze: OpenAIRE