Solutions to inverse moment estimation problems in dimension 2, using best constrained approximation

Autor: Elodie Pozzi, Juliette Leblond
Přispěvatelé: Analyse fonctionnelle pour la conception et l'analyse de systèmes (FACTAS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Saint Louis University (SLU)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Approximation Theory
Journal of Approximation Theory, In press, ⟨10.1016/j.jat.2020.105520⟩
Journal of Approximation Theory, Elsevier, In press, ⟨10.1016/j.jat.2020.105520⟩
ISSN: 0021-9045
1096-0430
DOI: 10.1016/j.jat.2020.105520⟩
Popis: We study an inverse problem that consists in estimating the first (zero-order) moment of some R 2 -valued distribution m that is supported within a closed interval S ⊂ R , from partial knowledge of the solution to the Poisson–Laplace partial differential equation with source term equal to the divergence of m on another interval parallel to and located at some distance from S . Such a question coincides with a 2D version of an inverse magnetic “net” moment recovery question that arises in paleomagnetism, for thin rock samples. We formulate and constructively solve a best approximation problem under constraint in L 2 and in Sobolev spaces involving the restriction of the Poisson extension of the divergence of m . Numerical results obtained from the described algorithms for the net moment approximation are also furnished.
Databáze: OpenAIRE