Automated Segmentation of Spinal Muscles From Upright Open MRI Using a Multiscale Pyramid 2D Convolutional Neural Network

Autor: Benjamin Dourthe, Noor Shaikh, Anoosha Pai S., Sidney Fels, Stephen H.M. Brown, David R. Wilson, John Street, Thomas R. Oxland
Rok vydání: 2021
Předmět:
Zdroj: Spine. 47:1179-1186
ISSN: 0362-2436
DOI: 10.1097/brs.0000000000004308
Popis: Randomized trial.To implement an algorithm enabling the automated segmentation of spinal muscles from open magnetic resonance images in healthy volunteers and patients with adult spinal deformity (ASD).Understanding spinal muscle anatomy is critical to diagnosing and treating spinal deformity.Muscle boundaries can be extrapolated from medical images using segmentation, which is usually done manually by clinical experts and remains complicated and time-consuming.Three groups were examined: two healthy volunteer groups (N = 6 for each group) and one ASD group (N = 8 patients) were imaged at the lumbar and thoracic regions of the spine in an upright open magnetic resonance imaging scanner while maintaining different postures (various seated, standing, and supine). For each group and region, a selection of regions of interest (ROIs) was manually segmented. A multiscale pyramid two-dimensional convolutional neural network was implemented to automatically segment all defined ROIs. A five-fold crossvalidation method was applied and distinct models were trained for each resulting set and group and evaluated using Dice coefficients calculated between the model output and the manually segmented target.Good to excellent results were found across all ROIs for the ASD (Dice coefficient0.76) and healthy (dice coefficient0.86) groups.This study represents a fundamental step toward the development of an automated spinal muscle properties extraction pipeline, which will ultimately allow clinicians to have easier access to patient-specific simulations, diagnosis, and treatment.
Databáze: OpenAIRE