Current multiblock methods: competition or complementarity? A comparative study in a unified framework

Autor: Thomas Verron, Stéphanie Bougeard, Ndèye Niang, Xavier Bry
Přispěvatelé: Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), SEITA-ITG (SEITA-ITG), SEITA
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Chemometrics and Intelligent Laboratory Systems
Chemometrics and Intelligent Laboratory Systems, Elsevier, 2018, 182, pp.131-148. ⟨10.1016/j.chemolab.2018.09.003⟩
Agrostat 2018
Agrostat 2018, Mar 2018, Marseille, France
ISSN: 0169-7439
Popis: We address the issue of exploring—with respect to multiple regression model(s) or to simple pairwise links—the relationships between blocks of variables measured on the same observations. Multiblock methods have been developed over the past twenty years, and are now used more and more frequently, especially for high-dimensional data. We focus on three current methods: regularized Generalized Structured Component Analysis (rGSCA), regularized Generalized Canonical Correlation Analysis (rGCCA) and THEmatic Model Exploration (THEME). These methods are rewritten in a common formal setting and compared with respect to two issues: how they explore block-relationships, and how they separate information from noise. Multiblock methods are applied to simulated data and to real data pertaining to the chemistry framework to illustrate their differences and complementarities.
Databáze: OpenAIRE