Current multiblock methods: competition or complementarity? A comparative study in a unified framework
Autor: | Thomas Verron, Stéphanie Bougeard, Ndèye Niang, Xavier Bry |
---|---|
Přispěvatelé: | Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), SEITA-ITG (SEITA-ITG), SEITA |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Theoretical computer science
Computer science Process Chemistry and Technology 05 social sciences 050401 social sciences methods 01 natural sciences Complementarity (physics) Computer Science Applications Analytical Chemistry 010104 statistics & probability Thematic map 0504 sociology Component analysis [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Generalized canonical correlation Simulated data Linear regression Pairwise comparison 0101 mathematics Spectroscopy Software ComputingMilieux_MISCELLANEOUS |
Zdroj: | Chemometrics and Intelligent Laboratory Systems Chemometrics and Intelligent Laboratory Systems, Elsevier, 2018, 182, pp.131-148. ⟨10.1016/j.chemolab.2018.09.003⟩ Agrostat 2018 Agrostat 2018, Mar 2018, Marseille, France |
ISSN: | 0169-7439 |
Popis: | We address the issue of exploring—with respect to multiple regression model(s) or to simple pairwise links—the relationships between blocks of variables measured on the same observations. Multiblock methods have been developed over the past twenty years, and are now used more and more frequently, especially for high-dimensional data. We focus on three current methods: regularized Generalized Structured Component Analysis (rGSCA), regularized Generalized Canonical Correlation Analysis (rGCCA) and THEmatic Model Exploration (THEME). These methods are rewritten in a common formal setting and compared with respect to two issues: how they explore block-relationships, and how they separate information from noise. Multiblock methods are applied to simulated data and to real data pertaining to the chemistry framework to illustrate their differences and complementarities. |
Databáze: | OpenAIRE |
Externí odkaz: |