RNNbow: Visualizing Learning Via Backpropagation Gradients in RNNs

Autor: Dylan Cashman, Genevieve Patterson, Nathan Watts, Abigail Mosca, Remco Chang, Shannon Robinson
Rok vydání: 2018
Předmět:
Zdroj: IEEE Computer Graphics and Applications. 38:39-50
ISSN: 1558-1756
0272-1716
DOI: 10.1109/mcg.2018.2878902
Popis: We present RNNbow, an interactive tool for visualizing the gradient flow during backpropagation in training of recurrent neural networks. By visualizing the gradient, as opposed to activations, RNNbow offers insight into how the network is learning. We show how it illustrates the vanishing gradient and the training process.
Databáze: OpenAIRE