Assouad dimension of planar self-affine sets

Autor: Balázs Bárány, Antti Käenmäki, Eino Rossi
Přispěvatelé: Department of Mathematics and Statistics
Rok vydání: 2020
Předmět:
Zdroj: Transactions of the American Mathematical Society. 374:1297-1326
ISSN: 1088-6850
0002-9947
Popis: We calculate the Assouad dimension of a planar self-affine set $X$ satisfying the strong separation condition and the projection condition and show that $X$ is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set $X$ adheres to very strong tangential regularity by showing that any two points of $X$, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.
25 pages, 2 figures; added Example 3.3, improved presentation
Databáze: OpenAIRE