Multiphysical simulation analysis of the dislocation structure in germanium single crystals
Autor: | V. M. Mamedov, A. D. Smirnov, V. V. Kalaev, A. F. Shimanskii, V. V. Artemyev, A. P. Sid’ko, O. I. Podkopaev, E. D. Kravtsova |
---|---|
Přispěvatelé: | Институт цветных металлов и материаловедения, Кафедра композиционных материалов и физико-химии металлургических процессов |
Rok vydání: | 2016 |
Předmět: |
010302 applied physics
Dislocation creep dislocation Materials science Physics and Astronomy (miscellaneous) Condensed matter physics chemistry.chemical_element Crystal growth Germanium 02 engineering and technology 021001 nanoscience & nanotechnology Software package 01 natural sciences 53.41.29 Condensed Matter::Materials Science Quality (physics) chemistry high-quality germanium Lattice defects 0103 physical sciences Dislocation 0210 nano-technology |
Zdroj: | Technical Physics. 61:1286-1291 |
ISSN: | 1090-6525 1063-7842 |
DOI: | 10.1134/s1063784216090206 |
Popis: | Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала. To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander–Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality. |
Databáze: | OpenAIRE |
Externí odkaz: |