Une méthode pour réduire les faux positifs dans une requête brevet
Autor: | Johannes Van Der Pol, Jean-Paul Rameshkoumar |
---|---|
Přispěvatelé: | Groupe de Recherche en Economie Théorique et Appliquée (GREThA), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Bordeaux Sciences Economiques (BSE), Plateforme de recherche VIA Inno (VIA Inno), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Van der Pol, Johannes |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Competitive Intelligence
Technology Mapping JEL: O - Economic Development Innovation Technological Change and Growth/O.O3 - Innovation • Research and Development • Technological Change • Intellectual Property Rights/O.O3.O34 - Intellectual Property and Intellectual Capital Patent landscaping General Engineering Information systems Patent Query JEL: O - Economic Development Innovation Technological Change and Growth/O.O3 - Innovation • Research and Development • Technological Change • Intellectual Property Rights/O.O3.O31 - Innovation and Invention: Processes and Incentives [SHS.ECO] Humanities and Social Sciences/Economics and Finance [SHS.ECO]Humanities and Social Sciences/Economics and Finance Patents |
Popis: | The aim of this paper is to present a method that allows researchers and analysts to reduce the number of false positives in a patent query. Patents are not only used for prior art searches but increasingly for competitive analyses and the analysis of the evolution of technology. When these cases focus on specific technological domains, non-experts will aim to identify patents related to their focus technology. In certain cases, this can require complex queries to contain thousands of patents. It then becomes difficult to identify false positives. We present a method that allows researchers and analysts to refine their queries on large datasets. |
Databáze: | OpenAIRE |
Externí odkaz: |