Some fixed point theorems for ( ψ − ϕ ) $(\psi -\phi )$ -almost weak contractions in S-metric spaces solving conformable differential equations
Autor: | Gurucharan Singh Saluja, Hemant Kumar Nashine, Rabha W. Ibrahim |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
Pure mathematics Differential equation Applied Mathematics lcsh:Mathematics Fixed-point theorem 02 engineering and technology Fixed point Conformable matrix ( ψ − ϕ ) $(\psi -\phi )$ -almost weak contraction lcsh:QA1-939 01 natural sciences Common fixed point 010305 fluids & plasmas Fractional calculus S-metric space Metric space 0103 physical sciences 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics 020201 artificial intelligence & image processing Uniqueness Analysis Mathematics |
Zdroj: | Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-27 (2020) |
DOI: | 10.1186/s13660-020-02386-w |
Popis: | The aim of this paper is to establish some fixed point and common fixed point theorems for $(\psi -\phi )$(ψ−ϕ)-almost weak contractions in complete S-metric spaces, followed by some supportive examples. Our results extend and generalize several results existing in the literature. We employ the outcomes of the fixed point theorems to establish the existence and uniqueness of a solution for a class of conformable differential equations which is a new branch of fractional calculus. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |