Computational Fluid Dynamic Modeling and Simulation of Hydrocracking of Vacuum Gas Oil in a Fixed-Bed Reactor
Autor: | Sepehr Sadighi, Ali Taghvaie Nakhjiri, Samyar Zabihi, Davood Faraji, Saeed Shirazian, Mahdi Ghadiri |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Vacuum distillation General Chemical Engineering Nuclear engineering General Chemistry Residence time (fluid dynamics) Article Volumetric flow rate law.invention Chemistry Cracking different flow rates law Mass flow rate hydrotreater QD1-999 Hydrodesulfurization Naphtha Distillation |
Zdroj: | ACS Omega ACS Omega, Vol 5, Iss 27, Pp 16595-16601 (2020) |
ISSN: | 2470-1343 |
DOI: | 10.1021/acsomega.0c01394 |
Popis: | peer-reviewed A four-lump computational fluid dynamic (CFD) model was proposed for the investigation of vacuum gas oil hydrocracking in a trickle-bed reactor. The experiment was conducted at 360−390 °C and 146 bar in the reactor at three different flow rates. It was found that the modeling predictions of vacuum gas oil cracking agreed well with the experimental measurements. Furthermore, the developed model analyzed the effects of the feed flow rate in the reactors on the concentration distribution and product yield. The maximum yields of the products including distillate (31%), naphtha (14%), and gas (3%) were obtained at the lowest feed flow rate. However, the feed flow rate enhancement from 0.1568 to 0.2059kg·h−1 led to the increasing feed concentration and reducing the product concentration at the outlet of the reactor. The latter phenomenon was happened due to the decreasing feed residence time with the increasing mass flow rate. |
Databáze: | OpenAIRE |
Externí odkaz: |