Autor: |
Timothy Kohl, Alan Koch, Paul J. Truman, Robert Underwood |
Přispěvatelé: |
Feldvoss, J, Grimley, L, Lewis, D, Pavelescu, A, Pillen, C |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Springer Proceedings in Mathematics & Statistics ISBN: 9783030115203 |
Popis: |
We discuss isomorphism questions concerning the Hopf algebras that yield Hopf–Galois structures for a fixed separable field extension L/K. We study in detail the case where L/K is Galois with dihedral group \(D_p\), \(p\ge 3\) prime and give explicit descriptions of the Hopf algebras which act on L/K. We also determine when two such Hopf algebras are isomorphic, either as Hopf algebras or as algebras. For the case \(p=3\) and a chosen L/K, we give the Wedderburn–Artin decompositions of the Hopf algebras. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|