The Structure of Hopf Algebras Acting on Dihedral Extensions

Autor: Timothy Kohl, Alan Koch, Paul J. Truman, Robert Underwood
Přispěvatelé: Feldvoss, J, Grimley, L, Lewis, D, Pavelescu, A, Pillen, C
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Springer Proceedings in Mathematics & Statistics ISBN: 9783030115203
Popis: We discuss isomorphism questions concerning the Hopf algebras that yield Hopf–Galois structures for a fixed separable field extension L/K. We study in detail the case where L/K is Galois with dihedral group \(D_p\), \(p\ge 3\) prime and give explicit descriptions of the Hopf algebras which act on L/K. We also determine when two such Hopf algebras are isomorphic, either as Hopf algebras or as algebras. For the case \(p=3\) and a chosen L/K, we give the Wedderburn–Artin decompositions of the Hopf algebras.
Databáze: OpenAIRE