Essential tori in spaces of symplectic embeddings
Autor: | Julian Chaidez, Mihai Munteanu |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
010102 general mathematics Torus Space (mathematics) 01 natural sciences Ellipsoid Injective function Moduli space 53D05 Mathematics - Symplectic Geometry 0103 physical sciences FOS: Mathematics Symplectic Geometry (math.SG) 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematics::Symplectic Geometry Symplectic geometry Singular homology Mathematics |
Zdroj: | Algebraic & Geometric Topology. 21:2489-2522 |
ISSN: | 1472-2739 1472-2747 |
DOI: | 10.2140/agt.2021.21.2489 |
Popis: | Given two $2n$--dimensional symplectic ellipsoids whose symplectic sizes satisfy certain inequalities, we show that a certain map from the $n$--torus to the space of symplectic embeddings from one ellipsoid to the other induces an injective map on singular homology with mod $2$ coefficients. The proof uses parametrized moduli spaces of $J$--holomorphic cylinders in completed symplectic cobordisms. 32 pages. Comments welcome! |
Databáze: | OpenAIRE |
Externí odkaz: |