Popis: |
Recently, three-terminal synaptic devices, which separate read and write terminals, have attracted significant attention because they enable nondestructive read-out and parallel-access for updating synaptic weights. However, owing to their structural features, it is difficult to address the relatively high device density compared with two-terminal synaptic devices. In this study, a vertical synaptic device featuring remotely controllable weight updates via e-field-dependent movement of mobile ions in the ion-gel layer is developed. This synaptic device successfully demonstrates all essential synaptic characteristics, such as excitatory/inhibitory postsynaptic current (E/IPSC), paired-pulse facilitation (PPF), and long-term potentiation/depression (LTP/D) by electrical measurements, and exhibits competitive LTP/D characteristics with a dynamic range (G |