Effect of powder metallurgy Cu-B4C electrodes on workpiece surface characteristics and machining performance of electric discharge machining
Autor: | Can Cogun, Nizami Aktürk, Asim Genc, Ziya Esen, Ferah Çoğun |
---|---|
Rok vydání: | 2016 |
Předmět: |
0209 industrial biotechnology
Materials science Yield (engineering) Mechanical Engineering Abrasive Metallurgy Intermetallic 02 engineering and technology Hardness Industrial and Manufacturing Engineering 020303 mechanical engineering & transports 020901 industrial engineering & automation Electrical discharge machining 0203 mechanical engineering Machining Powder metallurgy Surface layer |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 230:2190-2203 |
ISSN: | 2041-2975 0954-4054 |
DOI: | 10.1177/0954405415593049 |
Popis: | The main aim of this study is to produce new powder metallurgy (PM) Cu-B4C composite electrode (PM/(Cu-B4C)) capable of alloying the recast workpiece surface layer during electric discharge machining process with boron and other hard intermetallic phases, which eventually yield high hardness and abrasive wear resistance. The surface characteristics of the workpiece machined with a PM/(Cu-B4C) electrode consisted of 20 wt% B4C powders were compared with those of solid electrolytic copper (E/Cu) and powder metallurgy pure copper (PM/Cu) electrodes. The workpiece surface hardness, surface abrasive wear resistance, depth of the alloyed surface layer and composition of alloyed layers were used as key parameters in the comparison. The workpiece materials, which were machined with PM/(Cu-B4C) electrodes, exhibited significantly higher hardness and abrasive wear resistance than those of machined with the E/Cu and PM/Cu. The main reason was the presence of hard intermetallic phases, such as FeB, B4C (formed due to the boron in the electrode) and Fe3C in the surface layer. The improvement of the surface hardness achieved for steel workpiece when using PM/(Cu-B4C) electrodes was significantly higher than that reported in the literature. Moreover, the machining performance outputs (workpiece material removal rate, electrode wear rate and workpiece average surface roughness (Ra)) of the electrodes were also considered in this study. |
Databáze: | OpenAIRE |
Externí odkaz: |