Improvement of Image Quality of Cone-beam CT Images by Three-dimensional Generative Adversarial Network

Autor: Takumi Hase, Megumi Nakao, Keiho Imanishi, Mitsuhiro Nakamura, Tetsuya Matsuda
Rok vydání: 2021
Předmět:
Zdroj: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).
DOI: 10.1109/embc46164.2021.9629952
Popis: Artifacts and defects in Cone-beam Computed Tomography (CBCT) images are a problem in radiotherapy and surgical procedures. Unsupervised learning-based image translation techniques have been studied to improve the image quality of head and neck CBCT images, but there have been few studies on improving the image quality of abdominal CBCT images, which are strongly affected by organ deformation due to posture and breathing. In this study, we propose a method for improving the image quality of abdominal CBCT images by translating the numerical values to the values of corresponding paired CT images using an unsupervised CycleGAN framework. This method preserves anatomical structure through adversarial learning that translates voxel values according to corresponding regions between CBCT and CT images of the same case. The image translation model was trained on 68 CT-CBCT datasets and then applied to 8 test datasets, and the effectiveness of the proposed method for improving the image quality of CBCT images was confirmed.
Databáze: OpenAIRE