Adaptive quantile computation for Brownian bridge in change-point analysis

Autor: Jürgen Franke, André Herzwurm, Mario Hefter, Stefanie Schwaar, Klaus Ritter
Přispěvatelé: Publica
Rok vydání: 2022
Předmět:
Zdroj: Computational Statistics & Data Analysis. 167:107375
ISSN: 0167-9473
DOI: 10.1016/j.csda.2021.107375
Popis: As an example for the fast calculation of distributional parameters of Gaussian processes, a new Monte Carlo algorithm for the computation of quantiles of the supremum norm of weighted Brownian bridges is proposed. As it is known, the corresponding distributions arise asymptotically for weighted CUSUM statistics for change-point detection. The new algorithm employs an adaptive (sequential) time discretization for the trajectories of the Brownian bridge. A simulation study shows that the new algorithm by far outperforms the standard approach, which employs a uniform time discretization.
Databáze: OpenAIRE