Investigation of crimping effects on the stent deployment through in silico modeling

Autor: Vasileios S. Loukas, Georgia S. Karanasiou, Dimitrios Pleouras, Christos C. Katsouras, Nikolaos S. Tachos, Antonis I. Sakellarios, Arsen Semertzioglou, Lambros K. Michalis, Dimitrios I. Fotiadis
Rok vydání: 2022
Předmět:
Zdroj: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2022
ISSN: 2694-0604
Popis: Atherosclerosis is one of the most mortal diseases that affects the arterial vessels, due to accumulation of plaque, altering the hemodynamic environment of the artery by preventing the sufficient delivery of blood to other organs. Stents are expandable tubular wires, used as a treatment option. In silico studies have been extensively exploited towards examining the performance of such devices by employing Finite Element Modeling. This study models the crimping stage during stent implantation to examine the effect of inclusion of pre-stress state of the stent. The results show that modeling of the crimping stress state of the stent prior to the deployment results in under-expansion of the stent, due to the indirect inclusion of strain-induced hardening effects. As a result, it is evident that the compressive stent stress configuration is important to be considered in the computational modeling approaches of stent deployment.
Databáze: OpenAIRE