Popis: |
Most non-tuberculous mycobacteria exhibit intrinsic resistance against the anti-tuberculosis drug isoniazid (INH). We previously found that a pyrazinamidase/nicotinamidase of Mycobacterium smegmatis, named PzaA, has an enzymatic activity to hydrolyze INH, which may contribute to intrinsic resistance. Furthermore, PzaA expression is strongly induced by INH under nitrogen-depleted conditions, although the precise mechanism of this phenomenon remains unclear. Here, we aimed to reveal the mechanism underlying the INH-dependent induction of PzaA using a transcriptomic approach.RNA sequencing was performed to identify INH-inducible genes other than pzaA. 5' rapid amplification of cDNA ends analysis was employed to identify the transcription start sites of INH-induced transcription units. The function of a LuxR-like regulator gene (MSMEI_1050) found within the gene cluster containing pzaA was confirmed by gene deletion and complementation experiments involving INH hydrolysis assay and quantitative reverse transcription PCR.RNA sequencing revealed 23 genes that INH strongly induced under conditions of nitrogen depletion, 17 of which were in a gene cluster containing pzaA. This cluster comprised at least three transcription units, including a non-INH-inducible monocistronic unit containing MSMEI_1050. Deletion of this gene deprived M. smegmatis of the ability to respond to INH, and complementation restored this ability.MSMEI_1050 plays a key role in INH-dependent gene regulation. The precise mechanism of action is to be determined in future studies. |