An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems
Autor: | Henri Bavestrello, Benoit Vereecke, David Dureisseix |
---|---|
Přispěvatelé: | Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2003 |
Předmět: |
Discretization
Iterative method Stokes Computational Mechanics General Physics and Astronomy 010103 numerical & computational mathematics 01 natural sciences [PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph] FETI mixed formulation 0101 mathematics Mortar methods scalability Mathematics Balancing domain decomposition method Mechanical Engineering Mathematical analysis Herrmann Domain decomposition methods Finite element method Computer Science Applications [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph] 010101 applied mathematics Mechanics of Materials [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] [PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Mechanics of the structures [physics.class-ph] multilevel domain decomposition Decomposition method (constraint satisfaction) |
Zdroj: | Computer Methods in Applied Mechanics and Engineering Computer Methods in Applied Mechanics and Engineering, 2003, 192 (31-32), pp.3409-3429. ⟨10.1016/S0045-7825(03)00313-X⟩ Computer Methods in Applied Mechanics and Engineering, Elsevier, 2003, 192 (31-32), pp.3409-3429. ⟨10.1016/S0045-7825(03)00313-X⟩ |
ISSN: | 0045-7825 |
DOI: | 10.1016/S0045-7825(03)00313-X⟩ |
Popis: | International audience; Incompressible and nearly incompressible problems are treated herein with a mixed finite element formulation in order to avoid ill-conditioning that prevents accuracy in pressure estimation and lack of convergence for iterative solution algorithms. A multilevel dual domain decomposition method is then chosen as an iterative algorithm: the original FETI and FETI-DP methods are extended to deal with such problems, when the discretization of the pressure field is discontinuous throughout the elements. A dedicated augmentation of the algorithms is proposed and the different methods are compared with several preconditioners, for bidimensional test cases. The resulting approaches are both optimal and numerically scalable, and their costs are estimated with a complexity analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |