An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems

Autor: Henri Bavestrello, Benoit Vereecke, David Dureisseix
Přispěvatelé: Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Discretization
Iterative method
Stokes
Computational Mechanics
General Physics and Astronomy
010103 numerical & computational mathematics
01 natural sciences
[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph]
FETI
mixed formulation
0101 mathematics
Mortar methods
scalability
Mathematics
Balancing domain decomposition method
Mechanical Engineering
Mathematical analysis
Herrmann
Domain decomposition methods
Finite element method
Computer Science Applications
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph]
010101 applied mathematics
Mechanics of Materials
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Mechanics of the structures [physics.class-ph]
multilevel domain decomposition
Decomposition method (constraint satisfaction)
Zdroj: Computer Methods in Applied Mechanics and Engineering
Computer Methods in Applied Mechanics and Engineering, 2003, 192 (31-32), pp.3409-3429. ⟨10.1016/S0045-7825(03)00313-X⟩
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2003, 192 (31-32), pp.3409-3429. ⟨10.1016/S0045-7825(03)00313-X⟩
ISSN: 0045-7825
DOI: 10.1016/S0045-7825(03)00313-X⟩
Popis: International audience; Incompressible and nearly incompressible problems are treated herein with a mixed finite element formulation in order to avoid ill-conditioning that prevents accuracy in pressure estimation and lack of convergence for iterative solution algorithms. A multilevel dual domain decomposition method is then chosen as an iterative algorithm: the original FETI and FETI-DP methods are extended to deal with such problems, when the discretization of the pressure field is discontinuous throughout the elements. A dedicated augmentation of the algorithms is proposed and the different methods are compared with several preconditioners, for bidimensional test cases. The resulting approaches are both optimal and numerically scalable, and their costs are estimated with a complexity analysis.
Databáze: OpenAIRE