Partial corepresentations of Hopf algebras

Autor: Joost Vercruysse, Felipe Nalon Castro, Marcelo Muniz S. Alves, Glauber Quadros, Eliezer Batista
Rok vydání: 2021
Předmět:
Pure mathematics
Partial comodules
Algèbre linéaire et matricielle
Existential quantification
Coalgebra
Structure (category theory)
Partial corepresentation
01 natural sciences
Algèbre - théorie des anneaux - théorie des corps
Mathematics::K-Theory and Homology
Mathematics::Category Theory
Mathematics::Quantum Algebra
Hopf coalgebroid
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
Partial cosmash coproducts
Quantum Algebra (math.QA)
Category Theory (math.CT)
Bicoalgebroid
Representation Theory (math.RT)
0101 mathematics
16T05
16S40

Mathematics
Algebra and Number Theory
Mathematics::Rings and Algebras
010102 general mathematics
Mathematics - Category Theory
Mathematics - Rings and Algebras
Hopf algebra
Partial modules
Partial representation
Rings and Algebras (math.RA)
010307 mathematical physics
Groupes algébriques
Géométrie non commutative
Mathematics - Representation Theory
Zdroj: Journal of algebra, 577
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2021.03.001
Popis: We introduce the notion of a partial corepresentation of a given Hopf algebra H over a coalgebra C and the closely related concept of a partial H-comodule. We prove that there exists a universal coalgebra Hpar, associated to the original Hopf algebra H, such that the category of regular partial H-comodules is isomorphic to the category of Hpar-comodules. We introduce the notion of a Hopf coalgebroid and show that the universal coalgebra Hpar has the structure of a Hopf coalgebroid over a suitable coalgebra.
SCOPUS: ar.j
info:eu-repo/semantics/published
Databáze: OpenAIRE