A Theta-Band EEG Based Index for Early Diagnosis of Alzheimer’s Disease

Autor: Esteve Gallego-Jutglà, Justin Dauwels, Jordi Solé-Casals, Andrzej Cichocki, François-Benoît Vialatte
Přispěvatelé: Universitat de Vic. Escola Politècnica Superior
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: RIUVic. Repositorio Institucional de la Universidad de Vic
instname
Recercat. Dipósit de la Recerca de Catalunya
DOI: 10.3233/JAD-140468
Popis: Despite recent advances, early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG) remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony in the higher frequencies has been deeply analyzed. In this paper, we investigate the increase of synchrony found in narrow frequency ranges within the θ band. This particular increase of synchrony is used with the well-known decrease of synchrony in the band to enhance detectable differences between AD patients and healthy subjects. We propose a new synchrony ratio that maximizes the differences between two populations. The ratio is tested using two different data sets, one of them containing mild cognitive impairment patients and healthy subjects, and another one, containing mild AD patients and healthy subjects. The results presented in this paper show that classification rate is improved, and the statistical difference between AD patients and healthy subjects is increased using the proposed ratio.
Databáze: OpenAIRE