Palindromic 3-stage splitting integrators, a roadmap
Autor: | Jesús María Sanz-Serna, Cédric M. Campos |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España), Ministerio de Economía y Comercio (España) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Mathematical optimization
Physics and Astronomy (miscellaneous) Robótica e Informática Industrial 010103 numerical & computational mathematics Molecular dynamics 01 natural sciences Hybrid Monte Carlo Software FOS: Mathematics Applied mathematics Mathematics - Numerical Analysis 0101 mathematics Mathematics Numerical Analysis Partial differential equation Verlet integrator business.industry Applied Mathematics Palindrome Sampling (statistics) Numerical Analysis (math.NA) Partial differential equations Computer Science Applications Splitting algorithms 010101 applied mathematics Computational Mathematics Modeling and Simulation Integrator Verlet integration business Hamiltonian monte carlo 65L05 (Primary) 60J22 65C40 70F99 (Secondary) |
Zdroj: | UVaDOC. Repositorio Documental de la Universidad de Valladolid instname e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid |
DOI: | 10.1016/j.jcp.2017.06.006 |
Popis: | The implementation of multi-stage splitting integrators is essentially the same as the implementation of the familiar Strang/Verlet method. Therefore multi-stage formulas may be easily incorporated into software that now uses the Strang/Verlet integrator. We study in detail the two-parameter family of palindromic, three-stage splitting formulas and identify choices of parameters that may outperform the Strang/Verlet method. One of these choices leads to a method of effective order four suitable to integrate in time some partial differential equations. Other choices may be seen as perturbations of the Strang method that increase efficiency in molecular dynamics simulations and in Hybrid Monte Carlo sampling. 20 pages, 8 figures, 2 tables |
Databáze: | OpenAIRE |
Externí odkaz: |