New interpolation spaces and strict Hölder regularity for fractional abstract Cauchy problem
Autor: | Mansur Alam, Shruti Dubey, Dumitru Baleanu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Cauchy problem
Analytic semigroup Pure mathematics QA299.6-433 Algebra and Number Theory Partial differential equation Hölder continuity Mathematical analysis Fractional calculus Order (ring theory) Ordinary differential equation Solution operator Strict solution Interpolation space Analysis Mathematics Interpolation |
Zdroj: | Boundary Value Problems, Vol 2021, Iss 1, Pp 1-18 (2021) |
ISSN: | 1687-2770 |
Popis: | We know that interpolation spaces in terms of analytic semigroup have a significant role into the study of strict Hölder regularity of solutions of classical abstract Cauchy problem (ACP). In this paper, we first construct interpolation spaces in terms of solution operators in fractional calculus and characterize these spaces. Then we establish strict Hölder regularity of mild solutions of fractional order ACP. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |