RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization
Autor: | Radhey Sham Manik, Suresh Kumar Singla, Tanushri Jerath Sood, Manmohan Singh Chauhan, Prabhat Palta, Manishi Mukesh, Swati Viviyan Lagah |
---|---|
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Nuclear Transfer Techniques Buffaloes Cloning Organism RNA-Seq Fertilization in Vitro Biology Transcriptome 03 medical and health sciences 0302 clinical medicine Gene expression Genetics medicine Animals Blastocyst reproductive and urinary physiology Cloning 030219 obstetrics & reproductive medicine urogenital system Embryo Cell Biology Cell biology 030104 developmental biology medicine.anatomical_structure embryonic structures Somatic cell nuclear transfer Reprogramming Developmental Biology |
Zdroj: | Molecular reproduction and development. 86(9) |
ISSN: | 1098-2795 |
Popis: | Across farm animal species, the live birth rate obtained with somatic cell nuclear transfer (SCNT) embryos is only2% compared with40% obtained with in vitro fertilization (IVF) embryos, primarily due to incomplete nuclear reprogramming which results in aberrant embryonic gene expression. We used RNA sequencing to compare the global transcriptome profile of SCNT and IVF buffalo blastocysts. SCNT blastocysts expressed 17,061 transcripts, of which 941 were unique whereas, IVF blastocysts expressed 17,303 transcripts, of which 1,183 were unique. At ≥2-folds change (p .05), 331 transcripts were differentially expressed in the two groups among which, 19 were unique, 188 were downregulated and 143 were upregulated in SCNT compared with IVF blastocysts. Many genes affecting pluripotency, trophectoderm development, developmental regulation, and epigenetic modifications were upregulated in SCNT compared with IVF blastocysts. Among the four functional categories analyzed, epigenetic regulators were the most affected. Most of the WNT signaling pathway genes were upregulated whereas, the inhibitors of this pathway, such as DKK1, were downregulated in SCNT blastocysts, suggesting that this pathway is overexpressed in SCNT embryos. Gene Ontology analysis revealed that 25 biological processes, 20 molecular functions, and 24 cellular compartment categories were enriched in SCNT blastocysts. This data can help identify reprogramming errors for improving cloning efficiency. |
Databáze: | OpenAIRE |
Externí odkaz: |