Spatial Monte Carlo integration with annealed importance sampling

Autor: Kaiji Sekimoto, Muneki Yasuda
Rok vydání: 2020
Předmět:
Zdroj: Physical review. E. 103(5-1)
ISSN: 2470-0053
Popis: Evaluating expectations on an Ising model (or Boltzmann machine) is essential for various applications, including statistical machine learning. However, in general, the evaluation is computationally difficult because it involves intractable multiple summations or integrations; therefore, it requires approximation. Monte Carlo integration (MCI) is a well-known approximation method; a more effective MCI-like approximation method was proposed recently, called spatial Monte Carlo integration (SMCI). However, the estimations obtained using SMCI (and MCI) exhibit a low accuracy in Ising models under a low temperature owing to degradation of the sampling quality. Annealed importance sampling (AIS) is a type of importance sampling based on Markov chain Monte Carlo methods that can suppress performance degradation in low-temperature regions with the force of importance weights. In this study, a new method is proposed to evaluate the expectations on Ising models combining AIS and SMCI. The proposed method performs efficiently in both high- and low-temperature regions, which is demonstrated theoretically and numerically.
Databáze: OpenAIRE