On commensurable hyperbolic Coxeter groups
Autor: | Matthieu Jacquemet, Ruth Kellerhals, Rafael Guglielmetti |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Coxeter notation 010102 general mathematics Coxeter group 0211 other engineering and technologies 021107 urban & regional planning 02 engineering and technology Point group 01 natural sciences Relatively hyperbolic group Algebra Mathematics::Group Theory Coxeter complex Mathematics::Metric Geometry Artin group Geometry and Topology 0101 mathematics Longest element of a Coxeter group Coxeter element Mathematics |
Zdroj: | Geometriae Dedicata |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-016-0151-7 |
Popis: | For Coxeter groups acting non-cocompactly but with finite covolume on real hyperbolic space $$\mathbb H^n$$ , new methods are presented to distinguish them up to (wide) commensurability. We exploit these ideas and determine the commensurability classes of all hyperbolic Coxeter groups whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions. |
Databáze: | OpenAIRE |
Externí odkaz: |