Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit

Autor: Raveendran Muthurajan, S. V. Krishna Jagadish, Niteen N. Kadam, Michael J. Thomson, Lovely Mae F Lawas, Cherryl Quinones, Paul C. Struik, Anandhan Tamilselvan, Xinyou Yin, Michaël Dingkuhn, Rajeev N. Bahuguna
Jazyk: angličtina
Rok vydání: 2017
Předmět:
0106 biological sciences
0301 basic medicine
Candidate gene
Linkage disequilibrium
Résistance génétique
Physiology
Phénotype
Plant Science
01 natural sciences
F50 - Anatomie et morphologie des plantes
Plant Roots
Linkage Disequilibrium
F30 - Génétique et amélioration des plantes
Système racinaire
Génétique
Genetics
Principal Component Analysis
biology
Chromosome Mapping
food and beverages
Anatomy
Articles
PE&RC
Physiologie végétale
Phenotype
Anatomie végétale
Centre for Crop Systems Analysis
Genome
Plant

Zone tropicale
Crop Physiology
Genotype
Stress dû à la sécheresse
F60 - Physiologie et biochimie végétale
Oryza sativa
Quantitative trait locus
Oryza
03 medical and health sciences
Variation génétique
Quantitative Trait
Heritable

Life Science
Allele
Adaptation
Genetic association
Phenotypic plasticity
Morphologie végétale
Water
biology.organism_classification
030104 developmental biology
Résistance à la sécheresse
Genetic Loci
Linear Models
H50 - Troubles divers des plantes
human activities
010606 plant biology & botany
Genome-Wide Association Study
Zdroj: Plant Physiology 174 (2017) 4
Plant Physiology
Plant Physiology, 174(4), 2302-2315
ISSN: 0032-0889
Popis: Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress.
Databáze: OpenAIRE