A low-order nonconforming method for linear elasticity on general meshes
Autor: | Daniele Antonio Di Pietro, Alessandra Guglielmana, Michele Botti |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratorio di Modellistica e Calcolo Scientifico MOX (Dipartimento di Matematica 'Francesco Brioschi'), Politecnico di Milano [Milan] (POLIMI), ANR-15-CE40-0005,HHOMM,Méthodes hybrides d'ordre élevé sur maillages polyédriques(2015), ANR-17-CE23-0019,Fast4HHO,Solveurs rapides pour des discrétisations robustes en mécanique des fluides(2017) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Polynomial
locking-free methods Computational Mechanics General Physics and Astronomy 010103 numerical & computational mathematics [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] Space (mathematics) Polyhedral meshes 01 natural sciences Stability (probability) Convergence (routing) Korn's inequality FOS: Mathematics Applied mathematics Polygon mesh Mathematics - Numerical Analysis 0101 mathematics Linear elasticity Mathematics Hybrid High-Order methods Degree (graph theory) 65N08 65N30 74B05 74G15 Mechanical Engineering Numerical Analysis (math.NA) Computer Science Applications 010101 applied mathematics Mechanics of Materials Hybrid high-order methods Locking-free methods [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computer Methods in Applied Mechanics and Engineering Computer Methods in Applied Mechanics and Engineering, Elsevier, 2019, 354, pp.96-118. ⟨10.1016/j.cma.2019.05.031⟩ |
ISSN: | 0045-7825 |
DOI: | 10.1016/j.cma.2019.05.031⟩ |
Popis: | In this work we construct a low-order nonconforming approximation method for linear elasticity problems supporting general meshes and valid in two and three space dimensions. The method is obtained by hacking the Hybrid High-Order method, that requires the use of polynomials of degree $k\ge1$ for stability. Specifically, we show that coercivity can be recovered for $k=0$ by introducing a novel term that penalises the jumps of the displacement reconstruction across mesh faces. This term plays a key role in the fulfillment of a discrete Korn inequality on broken polynomial spaces, for which a novel proof valid for general polyhedral meshes is provided. Locking-free error estimates are derived for both the energy- and the $L^2$-norms of the error, that are shown to convergence, for smooth solutions, as $h$ and $h^2$, respectively (here, $h$ denotes the meshsize). A thorough numerical validation on a complete panel of two- and three-dimensional test cases is provided. Comment: 26 pages, 6 tables, and 4 Figures |
Databáze: | OpenAIRE |
Externí odkaz: |