Two-dimensional inverse quasilinear parabolic problem with periodic boundary condition
Autor: | Fatma Kanca, Irem Baglan |
---|---|
Přispěvatelé: | Kanca, Fatma |
Rok vydání: | 2018 |
Předmět: |
Parabolic equation
Iterative method Applied Mathematics 010102 general mathematics Mathematical analysis Finite difference method Boundary (topology) Inverse Inverse problem 01 natural sciences 010101 applied mathematics Linearization Finite-difference method Periodic boundary conditions Uniqueness 0101 mathematics Analysis Mathematics |
Zdroj: | Applicable Analysis. 98:1549-1565 |
ISSN: | 1563-504X 0003-6811 |
DOI: | 10.1080/00036811.2018.1434149 |
Popis: | In this study, we consider a coefficient problem of a quasi-linear two-dimensional parabolic inverse problem with periodic boundary and integral over determination conditions. We prove the existence, uniqueness and continuously dependence upon the data of the solution by iteration method. Also, we consider numerical solution for this inverse problem by using linearization and the implicit finite-difference scheme. |
Databáze: | OpenAIRE |
Externí odkaz: |