Linearly repetitive Delone sets are rectifiable

Autor: Daniel Coronel, J.-M. Gambaudo, José Aliste-Prieto
Rok vydání: 2011
Předmět:
Zdroj: ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Analysis & Pde
DOI: 10.48550/arxiv.1103.5423
Popis: We show that every linearly repetitive Delone set in the Euclidean d-space R d , with d ⩾ 2 , is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice Z d . In the particular case when the Delone set X in R d comes from a primitive substitution tiling of R d , we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice β Z d for some positive β. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings.
Databáze: OpenAIRE