Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment

Autor: Gabriel Gold, Vicente Ibáñez, Lara Fazio-Costa, Panteleimon Giannakopoulos, Agnès Michon, Philippe Millet, Marie-Pierre Deiber, Pascal Missonnier, François Herrmann
Rok vydání: 2007
Předmět:
Zdroj: Neuroscience, Vol. 150, No 2 (2007) pp. 346-356
ISSN: 0306-4522
Popis: Recent studies described several changes of endogenous event-related potentials (ERP) and brain rhythm synchronization during memory activation in patients with Alzheimer's disease (AD). To examine whether memory-related EEG parameters may predict cognitive decline in mild cognitive impairment (MCI), we assessed P200 and N200 latencies as well as beta event-related synchronization (ERS) in 16 elderly controls (EC), 29 MCI cases and 10 patients with AD during the successful performance of a pure attentional detection task as compared with a highly working memory demanding two-back task. At 1 year follow-up, 16 MCI patients showed progressive cognitive decline (PMCI) and 13 remained stable (SMCI). Both P200 and N200 latencies in the two-back task were longer in PMCI and AD cases compared with EC and SMCI cases. During the interval 1000 ms to 1700 ms after stimulus, beta ERS at parietal electrodes was of lower amplitude in PMCI and AD compared with EC and SMCI cases. Univariate models showed that P200, N200 and log% beta values were significantly related to the SMCI/PMCI distinction with areas under the receiver operating characteristic curve of 0.93, 0.78 and 0.72, respectively. The combination of all three EEG hallmarks was the stronger predictor of MCI deterioration with 90% of correctly classified MCI cases. Our data reveal that PMCI and clinically overt AD share the same pattern of working memory-related EEG activation characterized by increased P200-N200 latencies and decreased beta ERS. They also show that P200 latency during the two-back task may be a simple and promising EEG marker of rapid cognitive decline in MCI.
Databáze: OpenAIRE