Additional file 1 of Social determinants of health and hospital readmissions: can the HOSPITAL risk score be improved by the inclusion of social factors?

Autor: Obuobi, Shirlene, Chua, Rhys F. M., Besser, Stephanie A., Tabit, Corey E.
Rok vydání: 2021
Předmět:
DOI: 10.6084/m9.figshare.13520652
Popis: Additional file 1: Fig. S1. Correlation plot of HRS components and SDOH: Components of the HRS showed minimal collinearity with SDOH. Fig. S2. ROC for patients with and without admission 30 days before index: When stratified by the (a) presence or (b) absence of a prior admission within the prior 30 days, the addition of SDOH to the HRS did not improve its performance, similar to the unstratified dataset. Fig. S3. ROC for HRS and ADI + HRS or HRS and HI + HRS: Repeating our analysis by substituting the (a) ADI or (b) HI for the SVI produced similar results to our initial analyses; the addition of measures of SDOH did not improve the predictive performance of the HRS. Table S1. PCA Component Scores, all patients. Table S2. PCA Component Scores, randomly-sampled balanced dataset. Table S3. PCA Component Scores, patients with heart failure. Table S4. PCA Component Scores, patients with atrial fibrillation. Table S5. PCA Component Scores, patients with coronary artery disease. Table S6. PCA Component Scores, patients with COPD. Table S7. PCA Component Scores, patients with liver disease. Table S8. PCA Component Scores, patients with obesity. Table S9. PCA Component Scores, patients with pulmonary disease. Table S10. PCA Component Scores, patients with valvular heart disease. Table S11. PCA Component Scores, female patients. Table S12. PCA Component Scores, male patients. Table S13. Linear Regression Estimates, all patients. Table S14. Linear Regression Estimates, randomly-sampled balanced dataset. Table S15. Linear Regression Estimates, patients with heart failure. Table S16. Linear Regression Estimates, patients with atrial fibrillation. Table S17. Linear Regression Estimates, patients with coronary artery disease. Table S18. Linear Regression Estimates, patients with COPD. Table S19. Linear Regression Estimates, patients with liver disease. Table S20. Linear Regression Estimates, patients with obesity. Table S21. Linear Regression Estimates, patients with pulmonary disease. Table S22. Linear Regression Estimates, patients with valvular heart disease. Table S23. Linear Regression Estimates, female patients. Table S24. Linear Regression Estimates, male patients. Table S25. PCA Component Scores, all patients. Table S26. PCA Component Scores, randomly-sampled balanced dataset. Table S27. PCA Component Scores, patients with heart failure. Table S28. PCA Component Scores, patients with atrial fibrillation. Table S29. PCA Component Scores, patients with coronary artery disease. Table S30. PCA Component Scores, patients with COPD. Table S31. PCA Component Scores, patients with liver diseases. Table S32. PCA Component Scores, patients with obesity. Table S33. PCA Component Scores, patients with pulmonary disease. Table S34. PCA Component Scores, patients with valvular heart disease. Table S35. PCA Component Scores, female patients. Table S36. PCA Component Scores, male patients. Table S37. Linear Regression Estimates, all patients. Table S38. PCA Component Scores, randomly-sampled balanced dataset. Table S39. PCA Component Scores, patients with heart failure. Table S40. PCA Component Scores, patients with atrial fibrillation. Table S41. PCA Component Scores, patients with coronary artery disease. Table S42. PCA Component Scores, patients with COPD. Table S43. PCA Component Scores, patients with liver disease. Table S44. PCA Component Scores, patients with obesity. Table S45. PCA Component Scores, patients with pulmonary disease. Table S46. PCA Component Scores, patients with valvular heart disease. Table S47. Linear Regression Estimates, female patients. Table S48. Linear Regression Estimates, male patients.
Databáze: OpenAIRE