Sharp asymptotics for Fredholm Pfaffians related to interacting particle systems and random matrices

Autor: Roger Tribe, Oleg Zaboronski, Will FitzGerald
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Electron. J. Probab.
ISSN: 1083-6489
Popis: It has been known since the pioneering paper of Mark Kac, that the asymptotics of Fredholm determinants can be studied using probabilistic methods. We demonstrate the efficacy of Kac' approach by studying the Fredholm Pfaffian describing the statistics of both non-Hermitian random matrices and annihilating Brownian motions. Namely, we establish the following two results. Firstly, let $\sqrt{N}+\lambda_{max}$ be the largest real eigenvalue of a random $N\times N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix'). Consider the limiting $N\rightarrow \infty$ distribution $\mathbb{P}[\lambda_{max}
Comment: 14 pages
Databáze: OpenAIRE