Splitting methods for the nonlocal Fowler equation

Autor: Rémi Carles, Afaf Bouharguane
Přispěvatelé: Equations aux Dérivées Partielles (EDP), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), ANR-08-BLAN-0301,MathOcean,Analyse mathématique en océanographie et applications(2008)
Rok vydání: 2013
Předmět:
Zdroj: Mathematics of Computation
Mathematics of Computation, American Mathematical Society, 2014, 83 (287), pp.1121-1141. ⟨10.1090/S0025-5718-2013-02757-3⟩
ISSN: 1088-6842
0025-5718
DOI: 10.1090/s0025-5718-2013-02757-3
Popis: We consider a nonlocal scalar conservation law proposed by Andrew C. Fowler to describe the dynamics of dunes, and we develop a numerical procedure based on splitting methods to approximate its solutions. We begin by proving the convergence of the well-known Lie formula, which is an approximation of the exact solution of order one in time. We next use the split-step Fourier method to approximate the continuous problem using the fast Fourier transform and the finite difference method. Our numerical experiments confirm the theoretical results.
Comment: 20 pages, 3 figures. Presentation modified, some errors fixed
Databáze: OpenAIRE