Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces
Autor: | Danilo Costarelli, Nursel Çetin, Gianluca Vinti, Laura Angeloni, Anna Rita Sambucini |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Numerical Analysis
Multivariate statistics Matematik Modulus of smoothness Applied Mathematics quantitative estimates Lipschitz classes Sampling (statistics) Multivariate sampling Kantorovich operators Orlicz spaces modulus of smoothness quantitative estimates Lipschitz classes Multivariate sampling Kantorovich operators Orlicz spaces Multivariate sampling Kantorovich operators Orlicz spaces modulus of smoothness quantitative estimates Lipschitz classes modulus of smoothness Statistics Analysis Mathematics |
Zdroj: | Volume: 4, Issue: 2 229-241 Constructive Mathematical Analysis |
ISSN: | 2651-2939 |
Popis: | In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of L^p-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general case. |
Databáze: | OpenAIRE |
Externí odkaz: |