Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces

Autor: Danilo Costarelli, Nursel Çetin, Gianluca Vinti, Laura Angeloni, Anna Rita Sambucini
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Volume: 4, Issue: 2 229-241
Constructive Mathematical Analysis
ISSN: 2651-2939
Popis: In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of L^p-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general case.
Databáze: OpenAIRE