Renal angina. Characterization of the tools prediction of acute kidney injury in intensive care adults

Autor: Castellanos de la Hoz, Juan Camilo, Garcia Habeych, Jose Mauricio
Přispěvatelé: Zuñiga Rodriguez, Eduardo Alfonso, Molano-González, Nicolas
Jazyk: Spanish; Castilian
Rok vydání: 2021
Předmět:
Zdroj: Below, D; Lyubarova, R; Fein, S; Torosoff, M (2015) Disseminated intravascular coagulation with congestive heart failure and left ventricular thrombus: a case report with literature review of 7 cases. En: American Journal of Case Report. Vol. 31; No. 16; pp. 53-56
Itani, R; Minami, Y; Haruki, S; Watanabe, E; Hagiwara, N (2017) Prognostic impact of disseminated intravascular coagulation score in acute heart failure patients referred to a cardiac intensive care unit: a retrospective cohort study. En: Heart and Vessels. Vol. 32; No. 7; pp. 872-879
Toh, CH; Alhamdi, Y; Abrams, ST (2016) Current pathological and laboratory considerations in the diagnosis of disseminated intravascular coagulation. En: Annals of Laboratory Medicine. Vol. 36; No. 6; pp. 505-512
Zhou, Wenyan; Zhou, Wenjie; Bai, Jijia; Ma, Shenmao; Liu, Qinfu; Ma, Xigang (2019) TEG in the monitoring of coagulation changes in patients with sepsis and the clinical significance. En: Experimental and Therapeutic Medicine. Vol. 17; No. 5; pp. 3373-3382
Crochemore, Tomaz; Dias Campos, Flavia Nunes; Souza Pessoa, Camila Menezes; Lima Rocha, Leonardo (2017) Thromboelastometry-guided blood transfusion in septic shock complicated with disseminated intravascular coagulation: a case report. En: Clinical Case Report. Vol. 5; No. 5; pp. 701-706
Rout, G; Shalimar; Gunjan, D; Mahapatra, SJ; Kedia S (2019) Thromboelastography-guided blood product transfusion in cirrhosis patients with variceal bleeding: A randomized controlled trial. En: Journal of Clinical Gastroenterology. Disponible en: 10.1097/MCG.0000000000001214.
Muller, MCA; Stanworth, Sj; Coppens, M; Juffermans, NP (2017) Recognition and management of hemostatic disorders in critically ill patietns needing to undergo an invasive procedure. En: Transfusion Medicine Review. Vol. 31; No. 4; pp. 223-229
Jackson, AM; Dalzell, JR; Walker, NL; Coats, CJ; Jhund, PS; Petrie, MC (2018) Peripartum cardiomyopathy: diagnosis and management. En: Heart. Vol. 104; No. 9; pp. 779-786
Papageorgiou, C; Jourdi, G; Adjambri, E; Walborn, A; Patel, P (2018) Disseminated intravascular coagulation: An update on pathogenesis, diagnosis, and therapeutic strategies. En: Clinical and Applied Thrombosis/Hemostasis. Disponible en: 10.1177/1076029618806424.
Ram, P; Shah, M; Sirinvaravong, N; Lo, KB (2018) Left ventricular thrombosis in acute myocardial infarction: Evaluation of hospital mortality, thromboembolism, and bleeding. En: Clinical Cardiology. Vol. 41; No. 10; pp. 1289-1296
Sliwa, K; Mebazaa, A; Hilfiker-Kleiner, D; Petrie, MC; Maggioni, AP (2017) Clinical characteristics of patients from the worldwide registry on peripartum cardiomyopathy (PPCM): EURObservational research programme in conjunction with the Heart Failure Association of the European Society of Cardiology Study Group on PPCM. En: European Journal of Heart Failure. Vol. 19; No. 9; pp. 1131-1141
Garg, P; van der Geest, RJ; Swoboba, PP; Crandon, S (2019) Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics. En: European Heart Journal of Cardiovascular Imaging. Vol. 20; No. 1; pp. 108-117
McCarthy, CP; Vaduganathan, M; McCarthy, KJ; Januzzi, JL (2018) Left ventricular thrombus after acute myocardial infarction: Screening, prevention and treatment. En: Journal of American Medical Association Cardiology. Vol. 3; No. 7; pp. 642-649
Davis, CJ; Gurbel, PA; Gattis, WA; Fuzaylov, SY (2000) Hemostatic abnormalities in patients with congestive heart failure: Diagnostic significance and clinical challenge. En: International Journal of Cardiology. Vol. 75; No. 1; pp. 15-21
Felker, GM; Thompson, RE; Hare, JM; Hruban, RH (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. En: New England Journal of Medicine. Vol. 342; No. 15; pp. 1077-1084
Rakotz, MK; Townsend, RR; Yang, J; Alpert, BS; Heneghan, KA; Wynia, M; Wozniak, GD (2017) Medical students and measuring blood pressure: Results from the American Medical Association Blood Pressure Check Challenge. En: Journal of clinical hypertension. Vol. 19; No. 6; pp. 614-619
Souza Gallardo, Luis Manuel; Márquez Bobadilla, Ana Paula; López Atristáin, Alejandro Ismael (2012) Diferencias cualitativas en la toma de tensión arterial entre estudiantes de medicina de dos planes de estudio de la Facultad de Medicina de la UNAM. En: Investigación en Educación Médica. Vol. 1; No. 2; pp. 75-81
Alimoglu, Mustafa; Mamakli, Sumer (2010) Medical students lose their competence in clinical skills if not applied on real patients: results of two-year cohort study. En: Turkiye Klinikleri Journal of Medical Sciencie. Vol. 31; No. 6; pp. 1356-1363
González-Lopez, Jose; Gomez-Arnau, Ramirez (2009) Conocimientos sobre los procedimientos correctos de medición de la presión arterial entre estudiantes universitarios de ciencias de la salud. En: Revista Española de Cardiologia. Vol. 62; No. 5; pp. 568-571
Vischer, AS; Burkard, T (2017) Principles of Blood Pressure Measurement– Current Techniques, Office vsAmbulatory Blood Pressure Measurement. En: Advances in experimental medicine and biology. Vol. 956; pp. 85-96
Lee, JJ; Sobieraj, DM; Kuti, EL (2010) Student measurement of blood pressure using a simulator arm compared with a live subject´s arm. En: American Journal of pharmaceutical education. Vol. 74; No. 5
Fleming, Geoffrey; Askenazi, David; Birdges, Brian (2012) A multicenter international survey of renal supportive therapy during ECMO: The kidney intervention during extracorporeal membrane oxygenation (KDIMO) group. En: American Society for Artificial Internal Organs. Vol. 58; No. 4; pp. 407-414; Disponible en: 10.1097/MAT.0b013e3182579218.
Kuo, George; Shao-Wei, Chen; Pei-Chun, Fan (2019) Analysis of survival after initiation of continuous renal replacement therapy in patients with extracorporeal membrane oxygenation. En: Biomedical Nephrology. Vol. 20; No. 318; Disponible en: 10.1186/s12882-019-1516-6.
Chen, Han; Rong-Guo, Yu; Ning-Ning, Yin (2014) Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review. En: Critical Care. Vol. 18; No. 675; Disponible en: 10.1186/s13054-014-0675-x.
Tsung-Yu, Tsai; Hao, Chien; Feng-Chun, Tsai (2017) Comparison of RIFLE, AKIN, and KDIGO classifications for assessing prognosis of patients on extracorporeal membrane oxygenation. En: Journal of the Formosan Medical Association. Vol. 116; No. 11; pp. 844-851; Disponible en: 10.1016/j.jfma.2017.08.004.
Devasagayaraj, R; Cavarocchi, NC; Hirose, H; Does acute kidney injury affect survival in adults with acute respiratory distress syndrome requiring extracorporeal membrane oxygenation?. En: Perfusion. Vol. 33; No. 5; pp. 375-382; Disponible en: 10.1177/0267659118755272.
Haneya, A; Diez, C; Philipp, A (2015) Impact of Acute Kidney Injury on Outcome in Patients With Severe Acute Respiratory Failure Receiving Extracorporeal Membrane Oxygenation. En: Critical Care Medicine. Vol. 43; No. 9; pp. 1898-1906; Disponible en: 10.1097/CCM.0000000000001141.
Han, SS; Kim, HJ; Lee, SJ (2015) Effects of renal replacement therapy in patients receiving extracorporeal membrane oxygenation: A meta-analysis. En: Annals of Thoracic Surgery. Vol. 100; No. 4; pp. 1485-1495.; Disponible en: 10.1016/j.athoracsur.2015.06.018.
Kellum, Jhon; Lameire, Norbert (2012) KDIGO clinical practice guidelines for acute kidney injury. En: Kidney International. Supplements. Vol. 2; No. 1; pp. 1-138; Disponible en: 10.1038/kisup.2012.1.
Kellum, Jhon; Levin, N (2002) Developing a consensus classification system for acute renal failure. En: Current opinion in critical care. Vol. 8; pp. 509-514
Chertow, GM; Burdick, E; Honour, M (2005) Acute kidney injury, mortality, lenght of stay, and cost in hospitalized patients. En: Journal of the American Society of Nephrology. Vol. 16; pp. 3365-3370
Teixeira, Pedro; Ambruso, Sophia; Griffin, Benjamin (2018) Pulmonary consequences of acute kidney injury. En: Seminars in Nephrology. Vol. 39; pp. 3-16
Malbrain, Manu; Regenmortel, Niels; Saugel Bernd (2018) Principles of fluid management and stewardship in septic shock: it is to consider the four D´s and the four phases of fluid therapy. En: Annals of Intensive Care. Vol. 8; No. 66; pp. DOI:-10.1186/s13613-018-0402-x.; Disponible en: 10.1186/s13613-018-0402-x.
Oudemans-van, Heleen (2015) Hemostasis and thrombosis in continuous renal replacement therapy. En: Seminars in Thrombosis and Hemostasia. Vol. 41; pp. 91-98
Kanagasundaram, Suren; Ashley, Caroline (2019) Clinical practice guideline. Acute Kidney Injury. En: The Renal Association. pp. 1-120; Consultado en: 2020/01/03/. Disponible en: https://renal.org/wp-content/uploads/2017/07/FINAL-AKI-Guideline.pdf.
Susantitaphong, Paweena; Cruz, Dinna; Cerda, Jorge (2013) World incidence of AKI: A meta-analysis. En: Clinical Journal of the American Society of Nephrology. Vol. 8; pp. 1482-1493
Hoste, Eric; Kellum, Jhon; Selby, Nicholas (2018) Global epidemiology and outcomes of acute kidney injury. En: Nature Review Nephrology. Vol. 14; No. 10; pp. 607-625
Wonnacott, Alexa; Meran, Soma; Amphlett, Bethan (2014) Epidemiology and outcomes in community-acquired versus hospital-acquired AKI. En: Clinical Journal of the American Society of Nephrology. Vol. 9; pp. 1007-1014
Passoni, Reginaldo; Silva, Ariana; Batista, Luis (2019) An epidemiologic overview of acute kidney injury in intensive care units. En: Revista da Associacao Medica Brasileira. Vol. 65; No. 8; pp. 1094-1101.
Lombardi, Raul; Yu, Luis; Younes-Ibrahim, Mauricio (2008) Epidemiology of acute kidney injury in Latin America. En: Seminars in Nephrology. Vol. 28; pp. 320-329
Lombardi, Raul; Ferreiro, Alejando; Claure-Del Granado, Rolando (2019) EPILAT-IRA Study: A contribution to the understanging of the epidemiology of acute kidney injury in Latin America. Vol. 14; No. 11; pp. e0224655 Disponible en: 10.1371/journal.pone.0224655.
Mehta, Ravindra; Burdmann, Emmanuel; Cerda, Jorge (2016) Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. En: Lancet. Vol. 14; No. 387; pp. 2017-2025
Fonseca, Nelson; Cuestas, Diana; Mesa, Ana (2011) Renal injury study in critical ill patients in accordance with the new definition given by the Acute Kidney Injury Network. En: Journal of Critical Care. Vol. 26; pp. 206-212
Levey, Andrew; James, Matthew (2017) Acute Kidney Injury. En: Annals of Internal Medicine. Vol. 167; No. 9; pp. ITC66-ITC80; Disponible en: 10.7326/AITC201711070.
Rodriguez, Eva; Arias-Cabrales, Carlos; Bermejo, Sheila (2018) Impact of recurrente acute kidney injury on patients outcomes. En: Kidney & Blood Pressure Research. Vol. 43; pp. 34-44
Arias-Cabrales, Carlos; Rodriguez, Eva; Bermejo, Sheila (2018) Short-and long-term outcomes after non-severe acute kidney injury. En: Clinical and Experimental Nephrology. Vol. 22; No. 1; pp. 61-67
Ricci, Zaccaria; Romagnoli, Stefano (2018) Acute kidney injury: Diagnosis and classification in adults and children. En: Contributions to Nephrology. Vol. 193; pp. 1-12.
Koeze, J; Diepirink, Keus; van der Horst, C (2017) Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. En: BMC nephrology. Vol. 18; No. 70; pp. DOI:-10.1186/s12882-017-0487-8; Disponible en: 10.1186/s12882-017-0487-8.
Perry, F; Greenberg, Jason (2018) Acute kidney injury in real time: Prediction, Alerts, and Clinical decision support. En: Nephron Clinical Practice. Vol. 140; No. 2; pp. 116-119
Schetz, M; Gunst, J; van den Berghe, G (2014) The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. En: Intensive Care Medicine. Vol. 40; pp. 1709-1717.
De Rosa, Silvia; Samoni, Sara; Ronco, Claudio (2016) Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care. En: Critical Care. Vol. 20; pp. DOI:-10.1186/s13054-016-1218-4; Disponible en: 10.1186/s13054-016-1218-4.
Thongprayoon, Charat; Cheungpasitporn, Wisit; Harrison, Andrew (2016) The comparison of the commonly used surrogates for baseline renal function in acute kidney injury diagnosis and staging. En: BMC nephrology. Vol. 17; pp. 6 Disponible en: 10.1186/s12882-016-0220-z.
Ronco, Claudio; Kellum, Jhon; Haase, Michael (2012) Subclinical AKI is still AKI. En: Critical Care. Vol. 16; No. 3; pp. 313 Disponible en: 10.1186/cc11240.
Haase, Michael; Kellum, Jhon; Ronco, Claudio (2012) Subclinical AKI. En: Nature Review Nephrology. Vol. 8; pp. 735-739
Moledina, Dennis; Parikh, Chirag (2017) Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. En: Seminars in Nephrology. Vol. 38; pp. 3-11
Chu, Rong; Li, Cui; Wang, Suxia (2014) Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. En: Clinical Journal of the American Society of Nephrology. Vol. 9; pp. 1175-1182; Disponible en: 10.2215/CJN.06150613.
Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. En: Clinical pharmacology and therapeutics. Vol. 69; No. 3; pp. 89-95
Mariano, Filippo; Mella, Alberto; Vincenti, Marco; Biancone, Luigi (2019) Furosemide as a functional marker of acute kidney injury in ICU patients: a new role for an old drug. En: Journal of Nephrology. Vol. 32; pp. 883-839
Carvounis, Christos; Nisar, Sabeeha; Guro-Razuman, Samerah (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. En: Kidney International. Vol. 62; No. 6; pp. 2223-2229
Wasung, Michael; Chawla, Lakhmir; Madero, Magdalena (2015) Biomarkers of renal function, which and when?. En: Clinica Chimica Acta. Vol. 438; pp. 350-357
Malhotra, Rakesh; Siew, Edward (2017) Biomarkers for the early detection and prognosis of acute kidney injury. En: Clinical Journal of the American Society of Nephrology. Vol. 12; pp. 149-173; Disponible en: 10.2215/CJN.01300216.
Kashani, Kianoush; Cheungpasitporn, Wisit; Ronco, Claudio (2017) Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. En: Clinical Chemistry and Laboratory Medicine. Vol. 55; pp. 1074-1089; Disponible en: 10.1515/cclm-2016-0973.
Siew, Edward; Ware, Lorraine; Bian, Aihua (2013) Distinct injury markers for the early detection and prognosis of incident acute kidney injury in critically ill adults with preserved kidney function. En: Kidney International. Vol. 84; pp. 786-794
Griffin, Benjamin; Gist, Katja; Faubel, Sarah (2019) Current status of novel biomarkers for the diagnosis of acute kidney injury: A historical perspective. En: Journal of Intensive Care Medicine. pp. DOI:-10.1177/0885066618824531; Disponible en: 10.1177/0885066618824531.
Ostermann, Marlies; Philips, Barbara; Forni, Lui (2012) Biomarkers of acute kidney injury: Where are we now?. En: Critical Care. Vol. 16; No. 5; pp. 233 Disponible en: 10.1186/cc11380.
Ricci, Zaccaria; Ronco, Claudio (2006) Practice patterns in the management of acute renal failure in the critically ill patient: an international survey. En: Nephrology, dialysis, transplantation. Vol. 21; No. 3; pp. 690-696
Basu, Rajit; Chawla, Lakhmir; Wheeler, Derek; Goldstein, Stuart (2012) Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. En: Pediatric nephrology. Vol. 27; pp. 1067-1078
Johnson, Xa; Liu, Kathleen (2010) Acute Renal Syndrome/Renal Angina: A new paradigm for studies of Acute Kidney Injuey?. En: Clinical Journal of the American Society of Nephrology. Vol. 5; pp. 753-755
Hoste, Eric; Bagshaw, Sean; Bellomo, Rinaldo (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. En: Intensive Care Medicine. Vol. 41; pp. 1411-1423
Chawla, Lakhmir; Goldstein, Stuart; Kellum, Jhon; Ronco, Claudio (2015) Renal angina: concept and development of pretest probability assessment in acute kidney injury. En: Critical Care. Vol. 19; pp. 93 Disponible en: 10.1186/s13054-015-0779-y.
Goldstein, Stuart (2011) Acute kidney injury biomarkers: Renal angina and the need for a renal troponin I. En: BMC Medicine. Vol. 9; pp. DOI:-10.1186/1741-7015-9-135.; Disponible en: 10.1186/1741-7015-9-135.
Goldstein, Stuart; Chawla, Lakhmir (2010) Renal Angina. En: Clinical Journal of the American Society of Nephrology. Vol. 5; pp. 943-949; Disponible en: 10.2215/CJN.07201009.
McMahon, Blaithin; Koyner, Jay (2016) Risk stratification for Acute Kidney Injury: Are biomarkers enough?. En: Advance in Chronic Kidney Disease. Vol. 23; No. 3; pp. 167-178
Goldstein, Stuart (2018) The Renal Angina Index to predict Acute Kidney Injury: Are adults just large children?. En: Kidney International. Vol. 3; No. 3; pp. 516-518
Basu, Rajit; Zappitelli, Michael; Chawla, Lakhmir; Goldstein, Stuart (2104) Derivation and validation fo the renal angina index to improve the prediction of acute kidney injury in critically ill children. En: Kidney International. Vol. 85; pp. 659-667
Basu, Rajit; Kaddourah, Ahmad; Goldstein, Stuart (2018) Assessment of a renal angina index for the precdiction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. En: The Lancet. Child & adolescent health. Vol. 2; No. 2; pp. 112-120
Cruz, Dinna; Ferrer-Nadal, Asuncion; Piccinni, Pasquale; Goldstein, Stuart; Chawla, Lakhmir (2014) Utilization of small changes in serum creatinine with clinical risk factors to assess the risk of AKI in critically ill adults. En: Clinical Journal of the American Society of Nephrology. Vol. 9; pp. 663-672
Matsuura, Ryo; Srisawat, Nattachai; Claure-Del Granado, Rolando (2018) Use of the Renal Angina Index in determining Acute Kidney Injury. En: Kidney International. Vol. 3; pp. 677-683
Flechet, Marin; Guiza, Fabian; Schetz, Miet (2017) AKIpredictor, an online prognostic calculator for acute kidney injury in adults critically ill patients: development, validation and comparision to serum neutrophil gelatinase-associated lipocalin. En: Intensive Care Medicine. Vol. 43; No. 6; pp. 764-733
Vanmassenhove, Jill; Kielstein, Jan; Jorres, Achim; Van Biesen, Wim (2017) Management of patients at risk of acute kidney injury. En: Lancet. Vol. 389; pp. 2139-2151
Joannidis, M; Druml, W; Forni, Lui; Groeneveld, A (2017) Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017. En: Intensive Care Medicine. Vol. 43; No. 2017; pp. 730-749
Rivers, Emanuel; Nguyen, Bryant; Havstad, Suzanne (2001) Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. En: New England Journal of Medicine. Vol. 345; pp. 1368-1377
Marik, PE; Linde-Zwirble, WT; Bittner, EA (2017) Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of large national database. En: Intensive Care Medicine. Vol. 43; No. 5; pp. 625-632
Marik, PE; Baram, M; Vahid, B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. En: Chest Journal. Vol. 134; No. 1; pp. 172-178
Hjortrup, Peter; Haase, Nicolai; Bundgaard, Helle (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. En: Intensive Care Medicine. Vol. 42; pp. 1695-1705
Alsous, F; Khamiees, M; DeGirolamo, A (2000) Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. En: Chest Journal. Vol. 117; No. 6; pp. 1749-1759
Malbrain, Manu; Van Regenmortel, N; Saugel Bernd (2018) Principles of fluid management and stewardship in septic shock: it is time to consider the four D´s and the four phases of fluid therapy. En: Annals of Intensive Care. Vol. 8; No. 66; Disponible en: 10.1186/s13613-018-0402-x.
Semler, Matthew; Kellum, Jhon (2019) Balanced Crystalloid Solutions. En: American Journal of Respiratory and Critical Care Medicine. Vol. 199; No. 8; pp. 952-960
Asfar, Pierre; Meziani, Ferhat; Hamel, Jean-Francois (2014) High versus Low blood-pressure target in patients with septic shock. En: New England Journal of Medicine. Vol. 370; pp. 1583-1593
van den Berghe, G; Wouters, P; Weekers, F (2001) Intensive insulin therapy in critically ill patients. En: New England Journal of Medicine. Vol. 345; pp. 1359-1367
Schetz, Miet; Vanhorebeek, I; Wouters, P (2008) Tight blood glucose control is renoprotective in critically ill patients. En: Journal of American Society of Nephrology. Vol. 19; pp. 571-578
Finfer, S; Chittock, DR (2009) Intensive versus conventional glucose control in critically ill patients. En: New England Journal of Medicine. Vol. 360; pp. 1283-1297
Gocze, I; Jauch, D; Gotz, M (2018) Biomarker-guided intervention to prevent acute kidney injury after mayor surgery: The prospective randomized BigpAK study. En: Annals of Surgery. Vol. 267; No. 6; pp. 1013-1020
Meersch, M; Schmidt, C; Hoffmeier, A (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controller trial. En: Intensive Care Medicine. Vol. 43; No. 11; pp. 1551-1561
Sykes, L; Nipah, R; Kalra, P (2018) A narrative review of the impact of interventions in acute kidney injury. En: Journal of Nephrology. Vol. 31; No. 4; pp. 529-535
Abdelaziz, Tarek; Fouda, Ragai; Hussin, Wessam (2019) Preventing acute kidney injury and improving outcome in critically ill patients utilizing risk prediction score (PRAIOC-RISKS) study. A prospective controlled trial of AKI prevention. En: Journal of Nephrology. pp. DOI:-10.1007/s40620-019-00671-6.; Disponible en: 10.1007/s40620-019-00671-6.
Bolliger, D; Mauermann, E (2019) Renal Angina: A new paradigm for the prevention of acute kidney injury after cardiac surgery. En: Journal of Cardiothoracic and Vascular Anesthesia. Vol. 33; No. 2; pp. 365-367
Obuchowski, Nancy; McClish, Donna (1997) Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. En: Statistics in medicine. Vol. 16; No. 13; pp. 1529-1542
Cely, Javier Enrique; Mendoza, Elkin Jose; Perez, Luis Carlos (2019) Trabajos originales en Colombina de lesion renal aguda: ¿Que hay disponible a nivel nacional?. En: Repertorio de Medicina y Cirugia. Vol. 28; No. 2; pp. 75-80
Simel, David; Samsa, Gregory; Matchar David (1991) Likelihood ratios with confidence: Sample size estimation for diagnostic test studies. En: Journal of Clinical Epidemiology. Vol. 44; No. 8; pp. 763-770
Mehta, Ravindra; Cerda, Jorge; Burdmann, Emmanuel (2015) International society of nephrology´s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. En: Lancet. Vol. 385; pp. 2616-2643
Barton, Anna; Williams, Sam; Dickinson, Stephen; Parry, Rob; Pollard, Adam (2020) Acute kidney injury in primary care: A review of patient follow-up, mortality, and hospital admissions following the introduction of an AKI alert system. En: Nephron. Vol. 144; No. 10; pp. 498-505
Ugwuowo, Ugochukwu; Yamamoto, Yu; Arora, Tanima (2020) Real-time prediction of acute kidney injury in hospitalized adults: Implementarion and proof of concept. En: American Journal of Kidney Diseases. Vol. 76; No. 6; pp. 806-814
Schneider, Antoine; Uchino, Shigehiko; Bellomo, Rinaldo (2012) Severe acute kidney injury not treated with renal replacement therapy: characteristics and outcomes. En: Nephrology, dialysis, transplantation. Vol. 27; pp. 947-952
Ostermann, Marlies; Zarbock, Alexander; Goldstein, Stuart (2020) Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference. A consensus statement. En: JAMA Network Open. Vol. 3; No. 10; pp. e2019209 Disponible en: 10.1001/jamanetworkopen.2020.19209.
Kûllmar, Mira; Weib, Raphael; Ostermann, Marlies (2020) A multinational observational study exploring adherence with the kidney disease: Improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. En: Anesthesia & Analgesia. Vol. 130; pp. 910-916
Zarbock, Alexander; Kûllmar, Mira; Ostermann, Marlies (2021) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controller trial. En: Anesthesia & Analgesia. pp. DOI:-10.1213/ANE.0000000000005458.; Disponible en: 10.1213/ANE.0000000000005458.
Naicker, Saraladevi; Yang, Chih-Wei; Hwang, Shang-Jyh (2020) The novel Coronavirus 2019 epidemic and kidneys. En: Kidney International. Vol. 97; No. 5; pp. 824-828
Yang, Xianghong; Jin, Yiyang; Zhang Zhongheng (2020) Prevalence and impact of acute renal impairment on COVID-19: a systemacti review and meta-analysis. En: Critical Care. Vol. 24; No. 356; pp. DOI:-10.1186/s13054-020-03065-4
Thakkar, Jyotsana; Chand, Sudham; Aboodi, Michael (2020) Characteristics, outcomes and 60-day hospital mortality of ICU patients with COVID-19 and Acute Kideny Injury. En: Kidney360. Vol. 1; No. 12; pp. 1339-1344
Teoh, Jeremey; Yip, Terry; Lui, Grace (2021) Risk of AKI and major adverse clinical outcomes in patients with severe acute respiratory syndrome or Coronavirus Disease 2019. En: Journal of American Society of Nephrology. pp. DOI:-/10.1681/ASN.2020071097
Hirsch, Jamie; Ng, Jia; Ross, Daniel (2020) Acute kidney injury in patients hospitalized with COVID-19. En: Kidney International. Vol. 98; pp. 209-218
Fominiskiy, Evgeny; Scandroglio, Anna; Monti, Giacomo (2020) Prevalence, characteristics, risk factors, and outcomes of invasively ventilated COVID-19 patients with acute kidney injury and renal reaplacement therapy. En: Blood purification. pp. DOI:-10.1159/000508657
McNicholas, Bairbre; Rezoagli, Emanuele; Pham, Tai (2019) Impact of early acute kidney injury on management and outcome in patients with acute respiratory distress syndrome: A secondary analysis of a multicenter observational study. En: Critical Care Medicine. Vol. 47; pp. 1216-1225
Wiersema, Renske; Eck, Ruben; Haapio, Mikko (2020) Burden of acute kidney injury and 90-day mortality in critically ill patients. En: Critical Care. Vol. 21; No. 1; pp. DOI:-10.1186/s12882-019-1645-y
Thongprayoon, Charat; Cheungpasitporn, Wisit; Harrison, Andrew (2016) The comparison of the commonly used surrogates for baseline renal function in acute kidney injury diagnosis and staging. En: BMC nephrology. Vol. 17; No. 6; pp. DOI:-10.1186/s12882-016-0220-z
Bagshaw, Sean; Uchino, Shigehiko; Cruz, Dinna (2009) A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. En: Nephrology, dialysis, transplantation. Vol. 24; pp. 2739-2744
Pickering, John; Endre, Zoltan (2010) Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. En: Clinical Journal of the American Society of Nephrology. Vol. 5; pp. 1165-1173
Lang, Xia-bing; Yang, Yi; Yang, Ju-rong (2018) Comparison of three methods estimating baseline creatinine for acute kidney injury in hospitalized patientes: a multicentre survey in third-level urban hospitals of China. En: Kidney & Blood Pressure Research. Vol. 43; pp. 125-133
Kowarik, Alexander; Templ, Matthias (2016) Imputation with the R package VIM. En: Journal of statistical software. Vol. 74; No. 7; pp. DOI:-10.18637/jss.v074.i07
Donders, Rogier; van der Heijden, Geert; Stijnen, Theo (2006) A gentle introduction to imputation of missing values. En: Journal of Clinical Epidemiology. Vol. 59; pp. 1087-1091
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
DOI: 10.48713/10336_31937
Popis: Introducción. La lesión renal aguda (LRA) se caracteriza por una disminución abrupta de la función renal que desencadena graves consecuencias a largo plazo. La predicción del desarrollo de LRA en la unidad de cuidados intensivos (UCI) es limitada. Por lo tanto, se caracterizaron tres herramientas de predicción para LRA. Metodología. Estudio observacional retrospectivo, en adultos ingresados a UCI. Excluyendo pacientes en terapia de reemplazo renal previo al ingreso, LRA en el momento del ingreso, antecedente de trasplante renal, remitidos desde otra UCI o estancia < 48 horas. Los datos se recogieron durante una semana después del ingreso a UCI y se aplicaron a las herramientas de angina renal (Cruz et al., Índice de angina renal (RAI) y AKIpredictor). La LRA se definió con la clasificación KDIGO. Resultados. Ingresaron 1625 pacientes a UCI y se incluyeron 490 pacientes. 160 (32,6%) pacientes presentaron LRA. El puntaje de Cruz et al. presentó una sensibilidad del 92,8% y una especificidad del 56,6%, con una razón de verosimilitud negativa (-LR) de 0,13. El RAI y AKIpredictor presentaron un área bajo la curva de 0,66 (IC 95% 0,6-0,73) y 0,66 (IC 95% 0,59-0,73) respectivamente, con una -LR de 0,73 (IC 95% 0,6-0,89) y 0,4 (IC del 95%:0,17-0,77) respectivamente. Conclusiones. La caracterización de las herramientas de angina renal mostró que su utilidad radica en determinar qué pacientes tienen bajo riesgo y requieren menos intervenciones para la prevención de la LRA. Introduction. Acute Kidney Injury (AKI) is characterized by an abrupt decrease in kidney function that triggers severe long term consequences after the event. Prediction of the development of AKI in the (ICU) is limited. Therefore, three prediction tools for AKI were characterized. Methodology. Retrospective observational study, developed from January 31 to September 30, 2020, in adults admitted to the ICU. Patients on renal replacement therapy prior to admission, AKI at the time of admission, history of kidney transplantation, referred from another ICU or a stay of < 48 hours were excluded. Data was collected for a week after admission to intensive care and applied to the renal angina tools (Cruz et al., renal angina index and AKIpredictor). AKI was defined with the KDIGO classification. Results. 1625 patients were admitted to the ICU, of which 490 patients were included. 160 (32.6%) patients presented AKI. The Cruz et al. score presented a sensitivity of 92.8% and specificity of 56.6%, with a negative likelihood ratio (-LR) of 0.13. The renal angina index and AKIpredictor presented an area under the curve of 0.66 (95% CI 0.6-0.73) and 0.66 (95% CI 0.59-0.73) respectively, with a -LR of 0.73 (95% CI 0.6-0.89) and 0.4 (95% CI 0.17-0.77) respectively. Conclusions. The characterization of renal angina tools showed that their usefulness lies in determining which patients are at low risk and require fewer interventions for the prevention of AKI.
Databáze: OpenAIRE