Optimal decay rates for the compressible fluid models of Korteweg type
Autor: | Zhong Tan, Yanjin Wang |
---|---|
Rok vydání: | 2011 |
Předmět: |
Energy estimates
Capillary action Applied Mathematics Mathematical analysis Compressible Navier–Stokes equations Type (model theory) Viscous liquid Compressible flow Isothermal process Physics::Fluid Dynamics Nonlinear system Classical mechanics Capillary fluids Compressibility Optimal decay rates Korteweg system Analysis Second derivative Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 379(1):256-271 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2011.01.006 |
Popis: | We consider the compressible Navier–Stokes–Korteweg system that models the motions of the compressible isothermal viscous capillary fluids. We prove the optimal L 2 and L p , p ⩾ 2 decay rates for the classical solutions and their spatial derivatives. In particular, the optimal L 2 decay rate of the second-order spatial derivatives is obtained. The proof is based on the detailed study of the linear decay estimates and nonlinear energy estimates. |
Databáze: | OpenAIRE |
Externí odkaz: |