Generating 3D geothermal maps in Catalonia, Spain using a hybrid adaptive multitask deep learning procedure
Autor: | Seyed Mirfallah Lialestani, David Parcerisa, Mahjoub Himi, Abbas Abbaszadeh Shahri |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Recursos Naturals i Medi Ambient, Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC, Universitat Politècnica de Catalunya. GREMS - Grup de Recerca en Mineria Sostenible |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Control and Optimization
Catalonia Geothermal resources Renewable Energy Sustainability and the Environment 3D spatial subsurface temperature geothermal energy hybrid adaptive multitask deep learning predictive model Energy Engineering and Power Technology Building and Construction Enginyeria civil::Geomàtica::Sistemes d'informació geogràfica [Àrees temàtiques de la UPC] Energia geotèrmica Geothermal energy Predictive model Geological mapping Hybrid adaptive multitask deep learning Electrical and Electronic Engineering Engineering (miscellaneous) Cartografia geològica Energy (miscellaneous) |
Zdroj: | Energies; Volume 15; Issue 13; Pages: 4602 UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Mapping the subsurface temperatures can efficiently lead to identifying the geothermal distribution heat flow and potential hot spots at different depths. In this paper, an advanced adaptive multitask deep learning procedure for 3D spatial mapping of the subsurface temperature was proposed. As a result, predictive 3D spatial subsurface temperatures at different depths were successfully generated using geolocation of 494 exploratory boreholes data in Catalonia (Spain). To increase the accuracy of the achieved results, hybridization with a new modified firefly algorithm was carried out. Subsequently, uncertainty analysis using a novel automated ensemble deep learning approach for the predicted temperatures and generated spatial 3D maps were executed. Comparing the accuracy performances in terms of correct classification rate (CCR) and the area under the precision–recall curves for validation and whole datasets with at least 4.93% and 2.76% improvement indicated for superiority of the hybridized model. According to the results, the efficiency of the proposed hybrid multitask deep learning in 3D geothermal characterization to enhance the understanding and predictability of subsurface spatial distribution of temperatures is inferred. This implies that the applicability and cost effectiveness of the adaptive procedure in producing 3D high resolution depth dependent temperatures can lead to locate prospective geothermally hotspot active regions. |
Databáze: | OpenAIRE |
Externí odkaz: |