The return of the Andromedids meteor shower
Autor: | D. K. Wong, Robert Weryk, Peter Brown, Paul Wiegert |
---|---|
Rok vydání: | 2012 |
Předmět: |
Orbital elements
Physics Meteor (satellite) Earth and Planetary Astrophysics (astro-ph.EP) Zenithal hourly rate 010504 meteorology & atmospheric sciences Meteoroid Comet FOS: Physical sciences Astronomy and Astrophysics Astrophysics 01 natural sciences Shower Orbit Space and Planetary Science 0103 physical sciences Meteor shower 010303 astronomy & astrophysics Astrophysics - Earth and Planetary Astrophysics 0105 earth and related environmental sciences |
DOI: | 10.48550/arxiv.1209.5980 |
Popis: | The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as `stars fell like rain' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th Century. This shower returned in December 2011 with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar. The shower outburst occurred during 2011 Dec 3-5. The radiant at RA +$18\degree$ and Dec +$56\degree$ is typical of the `classical' Andromedids of the early 1800's, whose radiant was actually in Cassiopeia. The orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (16 km s$^{-1}$) and was comprised of small particles: the mean measured mass from the radar is $\sim5 \times 10^{-7}$ kg corresponding to radii of 0.5 mm at a bulk density of 1000 kg/m$^3$. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, timing as well as the absence of large particles in the streamlet are all consistent with simulations. Predictions are made regarding other appearances of the shower in the years 2000-2047 based on our numerical model. We note that the details of the 2011 return can, in principle, be used to better constrain the orbit of 3D/Biela prior to the comets first recorded return in 1772. Comment: submitted to the Astronomical Journal Sep 22 2012 |
Databáze: | OpenAIRE |
Externí odkaz: |