Bounded Entanglement Entropy in the Quantum Ising Model

Autor: Petra F. Scudo, Tobias J. Osborne, Geoffrey Grimmett
Přispěvatelé: Grimmett, Geoffrey R. [0000-0001-7646-3368], Apollo - University of Cambridge Repository, Grimmett, GR [0000-0001-7646-3368]
Rok vydání: 2020
Předmět:
Zdroj: Journal of Statistical Physics 178 (2020), Nr. 1
DOI: 10.17863/cam.60947
Popis: Funder: University of Cambridge
A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.
Databáze: OpenAIRE