Bounded Entanglement Entropy in the Quantum Ising Model
Autor: | Petra F. Scudo, Tobias J. Osborne, Geoffrey Grimmett |
---|---|
Přispěvatelé: | Grimmett, Geoffrey R. [0000-0001-7646-3368], Apollo - University of Cambridge Repository, Grimmett, GR [0000-0001-7646-3368] |
Rok vydání: | 2020 |
Předmět: |
Entropy
82B20 FOS: Physical sciences Quantum entanglement 01 natural sciences Article Entanglement 0103 physical sciences FOS: Mathematics ddc:530 0101 mathematics 010306 general physics Area law Quantum 82B20 60K35 Mathematical Physics ComputingMilieux_MISCELLANEOUS Mathematical physics Physics Random-cluster model Quantum Physics Spins Entropy (statistical thermodynamics) Transverse field Probability (math.PR) 010102 general mathematics Statistical and Nonlinear Physics Mathematical Physics (math-ph) Quantum Ising model 60K35 Bounded function Ising model Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik Quantum Physics (quant-ph) Ground state Mathematics - Probability |
Zdroj: | Journal of Statistical Physics 178 (2020), Nr. 1 |
DOI: | 10.17863/cam.60947 |
Popis: | Funder: University of Cambridge A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems. |
Databáze: | OpenAIRE |
Externí odkaz: |