SQUARE-FREE DISCRIMINANTS OF FROBENIUS RINGS

Autor: Chantal David, Jorge Jiménez Urroz
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia
Rok vydání: 2010
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 1793-7310
1793-0421
DOI: 10.1142/s1793042110003599
Popis: Let E be an elliptic curve over Q. It is well known that the ring of endomorphisms of $E_p$, the reduction of E modulo a prime p of ordinary reduction, is an order of the quadratic imaginary field $Q(\pi_p)$ generated by the Frobenius element $\pi_p$. When the curve has complex multiplication (CM), this is always a fixed field as the prime varies. However, when the curve has no CM, very little is known, not only about the order, but about the fields that might appear as algebra of endomorphisms varying the prime. The ring of endomorphisms is obviously related with the arithmetic of $a^2_p$−4p, the discriminant of the characteristic polynomial of the Frobenius element. In this paper, we are interested in the function $\pi^{sf}_{E,r,h}(\chi)$ counting the number of primes p up to x such that $a^2_p$ is square-free and in the congruence class r modulo h. We give in this paper the precise asymptotic for $\pi^{sf}_{E,r,h}(\chi)$ when averaging over elliptic curves defined over the rationals, and we discuss the relation of this result with the Lang-Trotter conjecture, and with some other problems related to the curve modulo p.
Databáze: OpenAIRE