A Kalman Filter Time Series Analysis Method for InSAR

Autor: Romain Jolivet, Manon Dalaison
Přispěvatelé: Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Rok vydání: 2020
Předmět:
Zdroj: Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research : Solid Earth
Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2020, 125 (7), pp.e2019JB019150. ⟨10.1029/2019JB019150⟩
ISSN: 2169-9356
2169-9313
Popis: International audience; Earth orbiting satellites, such as Sentinel 1A‐B, build up an ever‐growing set of synthetic aperture radar images of the ground. This conceptually allows for real‐time monitoring of ground displacements using Interferometric Synthetic Aperture Radar (InSAR), notably in tectonically active regions such as fault zones or over volcanoes. We propose a Kalman filter for InSAR time series analysis (KFTS), an efficient method to rapidly update preexisting time series of displacement with data as they are made available, with limited computational cost. KFTS solves together for the evolution of phase change with time and for a parametrized model of ground deformation. Synthetic tests of the KFTS reveal exact agreement with the equivalent weighted least squares solution and a convergence of descriptive model parameter after the assimilation of about 1 year of data. We include the impact of sudden deformation events such as earthquakes or slow slip events on the time series of displacement. First tests of the KFTS on ENVISAT data over Mt. Etna (Sicily) and Sentinel 1 data around the Chaman fault (Afghanistan, Pakistan) show precise (±0.05 mm) retrieval of phase change when data are sufficient. Otherwise, the optimized parametrized model is used to forecast phase change. Good agreement is found with classic time series analysis solution and GPS‐derived time series. Accurate estimates are conditioned to the proper parametrization of errors so that models and observations can be combined with their respective uncertainties. This new tool is freely available to process ongoing InSAR time series.
Databáze: OpenAIRE