Optimal dividend policies with random profitability
Autor: | Max Reppen, Jean-Charles Rochet, H. Mete Soner |
---|---|
Přispěvatelé: | Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Toulouse School of Economics (TSE), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Zurich, Soner, Halil Mete |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Economics and Econometrics
Mathematical optimization 3301 Social Sciences (miscellaneous) Singular control 2002 Economics and Econometrics Dividend policy 01 natural sciences FOS: Economics and business 010104 statistics & probability 2604 Applied Mathematics Accounting Bellman equation 0502 economics and business FOS: Mathematics 0101 mathematics B- ECONOMIE ET FINANCE Mathematics - Optimization and Control Mathematics 1402 Accounting 050208 finance Applied Mathematics 05 social sciences [SHS.ECO]Humanities and Social Sciences/Economics and Finance Mathematical Finance (q-fin.MF) 10003 Department of Banking and Finance 330 Economics Constraint (information theory) Dynamic programming Dividend problem Bankruptcy 2003 Finance Optimization and Control (math.OC) Quantitative Finance - Mathematical Finance Viscosity solutions Dividend Profitability index Barrier strategy Social Sciences (miscellaneous) Finance |
Zdroj: | Mathematical Finance Mathematical Finance, 2020, 30 (1), pp.228-259. ⟨10.1111/mafi.12223⟩ Mathematical Finance, 30 (1) |
ISSN: | 1467-9965 |
DOI: | 10.1111/mafi.12223⟩ |
Popis: | National audience; We study an optimal dividend problem under a bankruptcy constraint. Firms face a trade�off between potential bankruptcy and extraction of profits. In contrast to previous works, general cash flow drifts, including Ornstein–Uhlenbeck and CIR processes, are considered. We provide rigorous proofs of continuity of the value function, whence dynamic programming, as well as comparison between discontinuous sub� and supersolutions of the Hamilton–Jacobi–Bellman equation, and we provide an efficient and convergent numerical scheme for finding the solution. The value function is given by a nonlinear partial differential equation (PDE) with a gradient constraint from below in one direction. We find that the optimal strategy is both a barrier and a band strategy and that it includes voluntary liquidation in parts of the state space. Finally, we present and numerically study extensions of the model, including equity issuance and gambling for resurrection. |
Databáze: | OpenAIRE |
Externí odkaz: |